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Abstract

Real-world robots localize objects from natural-language instructions while scenes1

around them keep changing. Yet most of the existing 3D visual grounding (3DVG)2

method still assumes a perfectly reconstructed, up-to-date point cloud, an assump-3

tion that forces costly re-scans and hinders deployment. We argue that 3DVG4

should be reframed as an active, memory-driven problem, and we introduce Chang-5

ingGrounding, the first benchmark that explicitly measures how well an agent can6

exploit past observations, explore only where needed, and still deliver precise 3D7

boxes in changing scenes. To set a strong reference point, we also propose Mem-8

ChangingGrounder, a zero-shot framework that marries cross-modal retrieval with9

lightweight multi-view fusion: it identifies the object type implied by the query,10

retrieves relevant memories to guide attention, then explores the target in the scene11

based on this attention, gracefully falls back when previous operations are invalid,12

performs multi-view scanning of the target, and projects the fused evidence from13

multi-view scans into 3D space. We adapt three baselines to evaluate all approaches14

on ChangingGrounding. Mem-ChangingGrounder achieves the highest localization15

accuracy while relatively reducing exploration cost compared to baselines. We16

hope this benchmark and method catalyze a shift toward practical, memory-centric17

3DVG for real-world applications. The codes, datasets, and benchmarks are avail-18

able at https://github.com/hm123450/ChangingGroundingBenchmark.19

1 Introduction20

3D Visual Grounding (3DVG) is a critical technology that enables precise localization of target objects21

in 3D scenes through natural language instructions, with broad applications in service robotics [14],22

computer-aided room design [40, 13], and human-machine interaction [4, 23]. Current methodologies23

and benchmarks [2, 6] predominantly operate under static scene assumptions, where pre-reconstructed24

full scene point clouds [36] and textual queries [38] are fed into end-to-end models to predict 3D25

bounding boxes [16, 42, 27, 39, 15].26

However, as shown in fig. 1, these approaches face significant limitations when deployed in real-world27

robotic systems: practical environments are inherently dynamic (e.g., furniture rearrangement, object28

occlusion/replacement). Existing methods require up-to-date full scene point clouds as input—a29

premise often infeasible in evolving scenarios due to two key challenges: (1) robots have to explore30

the whole scene again to reconstruct complete point clouds; (2) reconstructing point clouds also incurs31

substantial computational overhead. In stark contrast, humans searching in changing environments32

quickly draw on memories of past scenes to pinpoint likely target areas and can complete object33

localization through only a few new observations. Inspired by this insight, we contend that a new34

memory-based paradigm for real-world 3D visual grounding is needed.35
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Figure 1: Comparison between traditional methods and ChangingGrounding task.

To the best of our knowledge, no existing work has explored 3D visual grounding in changing36

scenes by leveraging memory from past observations. In this paper, we formally define this task and37

introduce a novel benchmark called ChangingGrounding. The key motivation of the task and the38

benchmark is to measure how a 3D visual grounding system accurately and efficiently finds the target39

object by leveraging the memory of past observations and exploring the current scene.40

We formally define the task as follows: given the memory of the previous scene, the unexplored41

current scene, and a query describing the target object in the current scene, the robot needs to predict42

the target’s 3D bounding box in the current scene. We evaluate task performance using two key43

metrics: the accuracy of the predicted 3D bounding box and the cost for scene exploration. A better44

system achieves higher accuracy while keeping the lower cost of scene exploration. To support the45

task, we construct a ChangingGrounding dataset and benchmark, based on the 3RScan dataset [18]46

supported by a novel exploration and rendering pipeline to simulate how real-world robots perform47

3D visual grounding.48

In addition to our benchmark and dataset, we propose a novel framework called Mem-49

ChangingGrounder to address this new task. Our method is based on a previous zero-shot agent-based50

approach [43], due to the fact that current end-to-end approaches are not designed for memory access51

and scene agent exploration. Specifically, Mem-ChangingGrounder first classifies user queries, then52

retrieves relevant memories to guide its attention, and then explores the target images in the scene53

followed on this attention and the classification results, next ensures fallback localization if no valid54

target images are found, and finally performs multi-view scanning of the target and predicts 3D55

localization through multi-view projection.56

Finally, we introduce three baseline methods and compare them with our proposed Mem-57

ChangingGrounder on the ChangingGrounding benchmark. The three baselines are: (i) Wandering58

Grounding: aimless exploration without memory, (ii) Central Rotation Grounding: simple exploration59

without memory, and (iii) Memory-Only Grounding: memory-only with no further exploration. These60

baseline methods and our method enable a more comprehensive evaluation of memory’s contribution61

to the changing-grounding task under different collaborative modes. Experimental results show that62

Mem-ChangingGrounder boosts localization accuracy by 10%, while reducing exploration cost by63

35%, achieving the best balance between accuracy and efficiency.64

2 Related Work65

3D Visual Grounding Benchmarks. 3D visual grounding locates target objects through natural66

language queries. Early work focused on object-level retrieval, matching objects to shape descriptions67
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[1, 35]. ScanRefer [6] and ReferIt3D [2] pioneer to establish scene-level 3D visual grounding68

benchmarks, constructing extensive natural language descriptions of 3D objects based on static point69

clouds from ScanNet [8]. A subtle distinction lies in their objectives: ScanRefer targets full grounding70

from queries to 3D bounding boxes, while ReferIt3D emphasizes correct object identification with71

pre-provided groundtruth candidate positions for selection. Furthermore, several datasets have made72

strides in aligning with real-world grounding situations. Multi3DRefer [47] introduced a benchmark73

for localizing multiple objects simultaneously, where a single natural language query may correspond74

to one or more target objects. ScanReason [48] introduced a benchmark using complex human75

instructions as queries instead of explicit object descriptions, highlighting human intention and76

reasoning ability. Despite their careful design to reflect real-world needs, these datasets neglect the77

temporal dimension, a critical aspect since real environments are changing.78

3D Visual Grounding Methods. Previous 3D visual grounding methods can be broadly categorized79

into supervised end-to-end approaches and zero-shot methods. Supervised methods [15, 37, 42,80

16, 27, 39] require training on annotated 3D scene datasets, using a 3D detection branch to extract81

candidate objects from the scene, followed by a language branch to encode the query text. The text82

features are then fused with object features to select the target object. While these methods perform83

well on benchmarks, their scalability is limited by the scarcity of annotated data. Recently, zero-shot84

methods leveraged Large Language Models (LLMs) [41, 9, 5, 29] and Vision-Language Models85

(VLMs) [30, 7, 24, 44] to understand scenes, addressing the data scarcity problem. Some methods86

[45, 46, 11] approach 3D visual grounding by reformulating the task into a text-based problem for87

LLM reasoning or using LLMs to write scripts for target grounding. VLM-Grounder [43] eliminates88

the reliance on complete scene point clouds by leveraging VLM to comprehend and ground objects89

within 2D images. SeeGround [21] uses a VLM to select viewpoints and renders the 3D scene into90

images for VLM input. However, none of the existing methods consider the situation of 3D visual91

grounding in changing scenes. As VLM-Grounder does not require reconstructed point clouds as92

input, the overall framework is more suitable for 3D visual grounding in changing scenes. We develop93

our method based on VLM-Grounder and also use this method for various baselines.94

3D Perception in Changing Scenes. The academic dataset with scene changes can be traced back95

to the work of [12]. It was used to evaluate the performance of the 3D reconstruction algorithm in96

dynamic real-world scenes, however, it was relatively small in scale and lacked annotation information.97

InteriorNet [22] is a large-scale synthetic dataset that generates scenes with appearance and geometric98

variations by randomly simulating the movement of physical furniture and changes in lighting.99

3RScan [18] pioneered the creation of a large-scale real-world indoor RGB-D dataset, encompassing100

scans of the same indoor environment at different time points, and introduced the task of 3D object101

instance relocalization, which involves relocating object instances within changing indoor scenes.102

Based on this dataset, several studies have begun to explore changing scene-understanding tasks, such103

as camera relocalization in changing indoor environments [19], changing detection [3], changing104

environment reconstruction [49], and changing prediction [26]. Besides, Hypo3D [28] conducts a 3D105

VQA benchmark to evaluate models’ ability in changing scenes based on 3RScan. Notably, our work106

represents the first exploration of 3D visual grounding tasks in changing environments. The 3RScan107

dataset provides scene scans at different time steps, as well as the coordinate system transformations108

between scenes and the correspondences of objects. We construct our novel 3D visual grounding109

dataset based on these annotations.110

In this section, we first formulate the ChangingGrounding task, then establish the evaluation metrics,111

and finally detail the dataset collection pipeline along with a statistical analysis.112

2.1 Task Formulation113

Consider a robot that observed a room yesterday and acquired its scene information. When revisiting114

the room today, where some changes like object rearrangements occurred, the robot is tasked to115

locate a target object specified by a user query. The naive solution requires full room exploration then116

applying standard 3D-VG methods, which is inefficient and not feasible for real-world deployment.117

Inspired by human ability to locate objects using memory, we propose enabling robots to similarly118

leverage previous memory for more efficient and accurate target grounding.119

In this study, we formulate a novel visual grounding task in changing scenes. Given ⟨Sp, Sc,Mp, Dc⟩,120

the task is to predict 3D bounding box of target object. Sp refers to a previous physical scene that the121

robot visited. Sc denotes the currently unexplored scene when the robot revisits the same physical122
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space. What has changed between Sc and Sp remains unknown. Mp encapsulates the robot’s memory123

of the previous scene Sp, including RGB-D images, and their corresponding poses. Dc provides a124

textual description of a target object O in Sc. The task requires both efficient and precise grounding125

of the target object O in the scene Sc based on Mp and Dc. Therefore, we will evaluate this task by126

two key metrics: accuracy and exploration cost. Specifically, exploration cost comprises action cost127

Ca and motion cost Cm. (Further details are in section 2.2) In addition, for simplicity in research128

purposes, several task assumptions are established as follows.129

Zero-cost memory access. The memory information Mp for the previous scene Sp is stored in the130

robot’s database and can be accessed at any time without incurring additional cost.131

Standardized scene coordinate system. Each 3D scene has been aligned to a standardized coordinate132

system Ts. For different temporal scene states of the same physical space, their standardized133

coordinate systems are aligned to one global coordinate.134

Robot’s Initial Pose. First, we decide to adopt the OpenCV right-handed camera coordinate135

convention and apply it to all poses. Therefore, for convenience, we simply assume that in each136

scene, the robot is initially positioned at the origin of Ts and its initial orientation is obtained by137

transforming Ts so that the axes satisfy the OpenCV convention138

Exploration. For the new scene, Sc, the robot needs to explore to obtain relevant information about139

the scene. Therefore, the acquisition of information about Sc will involve certain costs. The specific140

definition of these costs will be detailed later in 2.2.141

New observations. We assume the robot is equipped with an RGB-D camera and it can move to142

achieve new positions and orientations (new poses). At the new pose, the robot can obtain a new143

observation (an RGB-D image). To fulfill this assumption, we developed a rendering module. The144

rendering module takes the mesh file of a scene and the desired new pose as inputs and outputs the145

RGB-D image observed from the new pose within the scene.146

(I,D) = Rendering(Mesh, Pose) (1)

2.2 Evaluation metrics147

The evaluation of the task is centered on two critical metrics: localization accuracy and cost. For148

localization accuracy, we follow the evaluation methodology employed in classic 3D-VG tasks, which149

is assessed by the ratio of samples for which the Intersection over Union (IoU) between the predicted150

3D bounding box and the ground-truth bounding box exceeds a predefined threshold (e.g. Acc@0.25).151

As for the exploration cost, we consider action cost Ca and motion cost Cm as defined below.152

Ca measures the number of actions required for the robot to move from its initial pose until successful153

target object localization. Each time the robot makes a decision and executes an action to reach a new154

pose to capture a new observation in the new scene, Ca increases by one.155

However, considering only the action cost is sometimes insufficient to fully evaluate efficiency. In156

some cases, the action cost may be low, but the robot still performs a large amount of physical157

movement during execution (for example, a single action might involve moving forward by 20158

meters), which can also lead to inefficiency. Therefore, inspired by the use of motion length as an159

evaluation metric in the navigation domain[17, 34], we also evaluate the robot’s movement. Since a160

robot’s motion consists of both translation and rotation, we take both into account in our evaluation,161

and we only consider translation within the horizontal plane.162

Furthermore, to place translation and rotation on a common scale, we express the overall motion163

cost Cm in units of time by dividing each component by a nominal speed. Consistent with typical164

humanoid platforms, we assume a translational speed of v = 0.5m/s and a rotational speed of165

ω = 1 rad/s.166

Formally, given the sequence of camera poses {(p1, R1), . . . , (pn, Rn)} achieved until the target167

object is localized (n is therefore the total number of actions, i.e., Ca), the motion cost is:168
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Figure 2: The Constructing pipeline for the ChangingGrounding dataset.
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The rotation term uses the well-known trace formula θ = arccos
(
(Tr(R⊤)− 1)/2

)
, which gives the169

rotation angle θ of a rotation matrices (a direct consequence of Rodrigues’ rotation theorem). By170

summing these angles and dividing by the nominal rotational speed ω, we obtain the rotation time.171

2.3 Dataset and benchmark construction172

To accommodate the proposed novel task, we constructed the ChangingGrounding dataset. The173

dataset includes the following components: (1)spatial relationship descriptions of the target objects,174

serving as user queries; (2)all the initial RGB-D images of each scene along with their corresponding175

camera poses, serving as memory information; (3)a mesh file for each scene, used to generate new176

observations. More specifically, we will construct ChangingGrounding dataset based on 3RScan177

dataset as it has 1,482 3D snapshots captured from 478 naturally changing indoor environments and178

provides transformation between different scans of the same scene which can help us to quickly align179

them to one global coordinate, dense instance-level semantic annotations, and correspondences of180

objects across scans which enables us to conveniently construct cases where the target object has181

been deliberately moved.182

The detailed construction pipeline is illustrated in fig. 2, we first followed the method of ReferIt3D[2]183

to build a spatial relation descriptions set, then we performed processing on 3RScan original data to184

get global coordinates of scans and re-render the RGB-D images for improved usability.185

Spatial relation descriptions set generation. We generate descriptions using a templated format:186

〈Target Category 〉〈Spatial Relationship 〉〈Anchor Category 〉, such as "the chair farthest from the187

cabinet." The anchor category must differ from the target category. To obtain the target categories188

and the anchor categories, we begin by selecting 209 fine-grained object categories from the 3RScan189

dataset, defined as the union of categories that appear in at least four scenes and those labeled as190

rigid-move in the 3RScan metafile, which targets to maximise coverage of objects that change. A191

target is considered valid as in a scene if (a) it belongs to these 209 categories, and (b) the scene192

contains no more than six distractor objects of that class. Anchor object categories include these193

209 classes plus 24 additional categories just like ReferIt3D. While ReferIt3D defines five spatial194

relationships including Horizontal Proximity, Vertical Proximity, Between, Allocentric, and Support,195

the Changing Grounding dataset excludes Allocentric relations due to the lack of front-orientation196

annotations in 3RScan, making it difficult to determine the correct front direction for objects with197

intrinsic orientation such as the back of an armchair.198

3RScan dataset processing. We first align scans at different time instances for the same scene199

to a global coordinate system. Specifically, we select the initial scan as the reference scan200

and then construct its standardized coordinate system based on the floor for each scene, set-201

ting the origin at 0.25 meters above the center of the floor, and aligning the z-axis with the202
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floor normal and the x-axis with the principal direction in the floor. After that, the trans-203

formation matrices between scans are applied to the standard coordinate system of the refer-204

ence scan, allowing us to compute the standard coordinate systems of the remaining scans.205

Figure 3: Word cloud of spatial relation
descriptions set.

After completing the alignment step, we focus on re-206

processing the RGB-D images. Since the camera intrin-207

sic, extrinsic parameters and image resolution in 3RScan208

are not commonly used, we establish a standardized209

camera model. In detailed, we adopt the released cam-210

era model parameters of ScanNet[8], (The resolution is211

1296×968 and camera intrinsics is (fx, fy, cx, cy) =212

(1169.6, 1167.1, 646.3, 489.9)). Then, we use rendering213

module and re-renders all RGB-D images following stan-214

dardized camera model in 3RScan dataset.215

Statistics.The Changing Grounding dataset contains216

266,916 referential language descriptions that can217

uniquely locate target objects through their spatial rela-218

tionships with surrounding objects. As shown in fig. 3, The word cloud shows a gradual distribution219

of lexical prominence through varying font sizes, with larger fonts indicating higher-frequency terms.220

It captures both widely referenced pieces of indoor furniture and a rich assortment of lower-frequency221

household items. Also, the raw 3RScan dataset contains 528 fine-grained object categories. Many222

labels overlap or are seldom used, so a 528-class taxonomy is unnecessary in practice. To make the223

dataset more tractable for downstream use, we merge these labels into 225 broader, semantically224

coherent categories with the assistance of ChatGPT-o1 [33].225

3 Mem-ChangingGrounder (MCG)226

In this section, we introduce Mem-ChangingGrounder (MCG), a framework designed for 3D visual227

grounding in changing scenes. MCG processes the user query Dc in the current scene Sc, to predict a228

3D bounding box of the target object O, with the help of the memory Mp of the previous scene, which229

are represented as RGB-D image sequences {Ip} and their corresponding camera pose sequences230

{pp}. As shown in Figure 4, the basic workflow of MCG is first to classify the user query to select the231

appropriate algorithm path for memory retrieval and grounding. If this stage fails to produce a reliable232

target, the fallback module is used. Finally, MCG will fuse the target’s multi-view information to233

achieve accurate grounding. MCG is built upon VLM-Grounder[43], we will begin by introducing234

this framework (Section 3.1) and then present the details of MCG’s four key modules.235

3.1 Preliminary of VLM-Grounder236

VLM-Grounder is a zero-shot 3D visual grounding method that achieves 3D localization of target237

objects using only 2D images and natural language descriptions. The main pipeline is as follows: all238

images containing the target category are detected and selected from the image sequence Is scanning239

the whole scene to form Idets . Then, a VLM analyzes the user query and the stitched Idets to locate240

the image containing the target object. Next, an open-vocabulary object detector generates the target241

object proposals within the image, and the VLM selects the correct object. Finally, a multi-view242

ensemble projection module integrates information from multiple viewpoints to accurately estimate243

the 3D bounding box of the target object.244

3.2 Overview and motivation of MCG key modules245

Query classification. Because we find that different types of queries determine whether the system246

can rely on memory for direct grounding, which in turn affects the focus of memory retrieval, we247

introduce this module to classify user queries accordingly. The module sorts user queries into two248

groups: verifiable queries and non-verifiable queries.249

Memory retrieval and grounding. This module is designed to combine memory and exploration to250

obtain an initial estimate of the target grounding result. It first either matches the anchor and target251

directly from memory or first pins down the anchor from memory depending on the classification252

results from prior module. After that, it make the robot explore further in current scene to pin253
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Figure 4: Workflow diagram of the Mem-ChangingGrounder(MCG). The upper part of the figure
illustrates the overall pipeline of MCG. MCG first classifies user queries, then retrieves target object
images via different memory retrieval and grounding algorithms based on the classification results
of user queries, with help of OSS and SARS components, then ensures fallback localization if no
valid target images are found, and finally predicts 3D bounding box of target through multi-view
projection. The lower part of the figure provides details about Omnidirectional scene scanner(OSS),
Spatial Relation Aware Scanner(SRAS), and multi-view projection in sequence. The OSS module
receives a pose and a query, then predicts the target that matches the query through fixed-point 360-
degree exploration. The SRAS module receives a anchor image pose and a query, then predicts the
target image that matches the query through exploration starting from the anchor image pose guided
by the spacial relationship of anchor and target indicated in the query. The multi-view projection
module captures multiple-view images by rotating around the target object, then integrates and filters
multi-view information to obtain a refined grounding result.

down the correct target in current scene. For convenience, we bundle particular exploration and254

procession into two reusable components and use them to determine the final target images: The255

Omnidirectional Scene Scanner (OSS) performs a quick 360° sweep to spot anchor or target images,256

whereas the Spatial Relation Aware Scanner (SRAS) module leverages the spatial relation between257

the anchor and the target to pinpoint the target object. More detailed information will be found in258

Section 3.3259

Fallback. If memory retrieval and grounding module fails, the module will falls back to one260

target-class image with respective pose and use OSS to conduct a new search for target.261

Multi-view projection. We build this module to obtain refined grounding results by collecting262

multi-view information and removing outliers. It first adopts a target-centered circular scanning263

strategy that captures multi-view observations of target object and then performs outlier filtering on264

their projections to get final grounding result.265

3.3 Details of MCG266

Note that the OSS and SRAS components may be reused across different modules of MCG, we first267

provide a detailed description of them then present the implementation details of MCG’s four key268

modules.269

Omnidirectional scene scanner. The OSS module receives a pose and a query, then predicts the270

target that matches the query through fixed-point 360-degree exploration. As shown in the first image271

bottom of fig. 4, given the initial pose p and user queries, OSS module will generate 20 poses by272
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rotating p about its y-axis through 18◦ × i (i = 0, 1, . . . , 19) followed by a downward rotation of273

20◦ about x-axis. Then OSS module captures images at each pose, annotates sequential IDs, and274

dynamically stitches them. Finally, OSS will input stitched result to VLM to predict the correct image275

based on user queries.276

pi = p ·Ry(18
◦ × i) ·Rx(−20◦), i = 0, 1, . . . , 19 (3)

Spatial relation-aware scanner. The SRAS module receives a anchor image pose and a query, then277

predicts the target image that matches the query through exploration starting from the anchor image278

pose guided by the spacial relationship of anchor and target indicated in the query. As shown in the279

second image bottom of fig. 4, given the anchor image pose pa and the user query Dc, VLM first280

analyzes the positional relationship between the target object ot and the anchor object oa based on the281

Dc. Leveraging this positional relationship, we adjust pa to generate a series of new poses. Images282

captured under these new poses are annotated with IDs and dynamically stitched together. Finally, the283

stitched images and Dc are input into the VLM to predict the target image. For the support&vertical284

positional relationship, adjust pa based on the relative position of ot to oa. If ot is below oa, first285

normalize pa so that its z-axis aligns downward with gravity. Then rotate around its x-axis by 20286

degrees each time to obtain a series of new poses. For the horizontal&between positional relationship,287

normalize pa first, and then use a method consistent with the OSS module to process pa to acquire a288

set of new poses.289

Query classification. Because different types of queries determine whether the system can rely on290

memory for direct grounding when the scene is static, which determines whether memory retrieval291

should focus more on the target or the anchor, we need to classify queries first. As presented in fig. 4,292

user queries can be categorized into two types: verifiable queries and non-verifiable queries. A query293

is verifiable if, when we find matching anchor and target objects based on user query in Sp and these294

objects remain static in Sc, we can guarantee the target still satisfies the user query in Sc(e.g., "the295

vase on the table"). In contrast, non-verifiable queries are those where we can’t guarantee the target296

objects matching user query in Sp will still satisfy same user query in Sc even if anchor and target297

objects don’t move (e.g., "the chair farthest from the table" the target found in Sp could be wrong if a298

farther chair is added in Sc).299

Memory retrieval and grounding. Two types of queries will have different methods for utilizing300

memory and grounding, we design this module to give memory-enhanced grounding solutions for301

both types of queries. After classify the query type, we can see in fig. 4, this module locates302

query-compliant target image and object in Sc by integrating memory Mp, user queries Dc, and303

exploration of Sc. Specifically, first following the VLM-Grounder approach, a 2D open-vocabulary304

detector filters Mp to generate a preprocessed image sequence {Ip}seq containing anchor class or305

target class, which are then dynamically stitched with ID annotations. For non-verifiable queries,306

the system prioritizes anchor object localization: VLM predicts anchor-containing image Ipa and307

target-class image Ipt for fallback purposes from {Ip}seq, then compares Ipa with its current scene308

counterpart Ica at the same pose pa. If the anchor in images remains unchanged, module inputs Ipa and309

its pose pa into the Spatial relation-aware scanner (SRAS) for target retrieval; if anchor movement310

is detected, it initiates Omnidirectional scene scanner (OSS) at the center of Sc to directly locate311

the target. For verifiable queries, the module attempts direct target localization: VLM predicts312

anchor images Ipa , query-matching target images Iptarget−match, and generic target images Ipt from313

{Ip}seq , then verifies the states of corresponding images Ica and Ictarget−match in Sc: if both remain314

unchanged, it directly outputs Ictarget−match; if only the target changes but the anchor remains static,315

it invokes SRAS for re-localization; if the anchor moves, it uses OSS for the anchor position, and316

upon successful location, uses SRAS to track the target.317

Fallback. If no valid target image is retrieved during memory retrieval and grounding module,318

the system will utilize the fallback target-class image Ipt (as mentioned in the previous paragraph).319

Starting from the respective pose of this image, OSS will be activated to perform a 360° search for320

images containing the target object category.321

Multi-scan projection. The projection point cloud from a single image may be incomplete due to the322

limited perspective, which can lead to insufficient localization accuracy. To address this, the module323

aims to capture multiple-view images by rotating around the target object with the initial target center324

as the focus. The specific process is as follows. Based on Memory-guided visual retrieval or Fallback325

target assurance, target images are acquired and input to the VLM to predict the 2D bounding box of326

the target object. The bounding box is subsequently fed into the SAM to generate masks, which are327
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then projected using camera parameters and depth information to construct reference point clouds328

(mask and point clouds processing follows VLM-Grounder protocols). As presented in the last image329

bottom of fig. 4, we calculate the 3D bounding box center c and diagonal length lbox of the reference330

point cloud. Using the 3D bounding box center c and diagonal length lbox of the reference point cloud,331

an observation sphere is defined with center c and radius center = c, r = max(lbox/2, 1.5/m).332

Sixteen observation poses {Ti}16i=1 are uniformly deployed on a 30°-tilted equatorial plane, where333

each pose Ti = (ti, Ri) satisfies ∥ti − c∥ = r with the Z-axis of Ri pointing toward the sphere center334

and the Y-axis aligned to the gravity-vertical component. Then, images are captured at those poses335

through render model, dynamically stitched, and filtered by VLM to select 4 optimal frames. Next,336

2D Open-vocabulary detection and SAM-based projection are performed on each frame to extract337

correct 2d sam whose corresponding point cloud’s center has minimal Euclidean distance to c in338

candidates of one frame. We project all valid SAM results into 3D point clouds and sort them by339

bounding box size. We then filter outliers by removing any point cloud whose size exceeds 2.2 times340

that of the next smaller one - this eliminates cases where SAM incorrectly included background.341

Finally, we merge the remaining point clouds with the reference point cloud to obtain the final result.342

4 Experimental Results343

4.1 Experimental Settings344

Dataset. The ChangingGrounding dataset is relatively large, so evaluating the entire set is unrealistic.345

Following the practice of VLM-Grounder[43] and LLM-Grounder[45], we randomly sampled 250346

validation instances from the Changing Grounding dataset for evaluation, thereby keeping computa-347

tional costs manageable. Each instance contains a query for the target object. Queries fall into two348

groups. “Unique” means that a single instance of the target class is in the scene, whereas “Multiple”349

means that additional same-class objects(distractors) are in the scene.350

Baselines. Three baselines will be evaluated on 250 test samples. Note that when designing351

the baseline methods, we thoroughly considered two extreme scenarios: (i) relying exclusively on352

exploration with no memory, and (ii) relying exclusively on memory with no exploration. The three353

baselines are organized as follows: 1) Wandering Grounding: The original VLM-Grounder approach354

utilizing all captured images and corresponding poses of scene Sc provided by the 3RScan dataset for355

grounding; 2) Central Rotation Grounding: The VLM-Grounder utilizes images captured through356

similar methodology of PSS at the initial pose in scene Sc for grounding; 3)Memory-Only Grounding:357

VLM-Grounder exclusively uses images from the memory Mp in scene Sp for grounding.358

Implementation Details. In our experiments, we use GPT-4.1-2025-04-14 [32] as VLM for baselines359

and MCG. We will conduct tests in both high-resolution and low-resolution image modes with the360

VLM. For VLM-Grounder variants, the VLM is configured with a temperature of 0.1 and a top-p361

value of 0.3 to balance randomness and creativity. We set the retry limit to M = 3, the maximum362

number of stitched images to L = 6, and the number of ensemble images to N = 7. For 2D363

open-vocabulary detectors, we used SAM-Huge [20, 10] and GroundingDINO [25]. The erosion364

kernel size is set to 7. For MCG, we adopt a similar configuration to the baseline, but without the365

retry limit (MCG has a different fallback mechanism).366

Evaluation metrics. The accuracy evaluation metrics are Acc@0.25 and Acc@0.5, which represent367

the percentage of samples where the Intersection over Union (IoU) between the predicted bounding368

box and the ground-truth bounding box exceeds 0.25 or 0.50, respectively. The cost evaluation369

metrics include Ca and Cm (as defined in section 2.2).370

4.2 Main Results371

As shown in fig. 1, our Mem-Changing Grounder hereafter our method achieves the highest overall372

accuracy in both the low resolution and the high resolution settings of the VLM. The recorded373

figures are 29.2 percent and 36.8 percent respectively, and these values clearly surpass the three374

baseline approaches. That clear margin underlines the superiority and robustness of our solution for375

grounding performance across a spectrum of visual qualities. At the same time the method preserves376

modest numbers for the action cost Ca and the displacement cost Cm, which demonstrates a carefully377

engineered compromise between raw effectiveness and practical efficiency. This is because, using our378

MCG method, the robot consults its memory bank before moving and then performs brief, purposeful379
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Table 1: Accuracy and exploration cost of three baselines and Mem-ChangingGrounder(ours) on the
ChangingGrounding Benchmark under both high-resolution and low-resolution settings. Different
resolution setting is separated by a middle dividing line. The higher the accuracy and the lower the
cost, the better the performance of the method. The highest method performance and the lowest cost
are bolded. The cost in the table is measured in units of 1000 seconds.

Overall Unique Multiple Cost ↓

Method Model Res @0.25 @0.50 @0.25 @0.50 @0.25 @0.50 Ca Ctrans Crot Cm

Wandering Grounding GPT-4.1 low 24.80 10.80 30.67 10.67 16.00 11.00 44.48 9.88 8.61 18.49

Central Rotation Grounding GPT-4.1 low 16.80 6.00 19.33 9.33 13.00 1.00 18.00 0 1.64 1.64

Memory-Only Grounding GPT-4.1 low 20.80 10.00 22.67 10.67 18.00 9.00 0.24 0.56 0.36 0.91

Mem-Text Changing Grounder(ours) GPT-4.1 low 29.20 14.80 30.00 15.33 28.00 14.00 8.53 5.84 3.98 9.82

Wandering Grounding GPT-4.1 high 32.40 12.80 38.67 16.00 23.00 8.00 44.48 9.88 8.61 18.49

Central Rotation Grounding GPT-4.1 high 17.20 6.80 18.00 8.00 16.00 5.00 18.00 0 1.64 1.64

Memory-Only Grounding GPT-4.1 high 26.00 12.40 26.67 11.33 25.00 14.00 0.24 0.53 0.38 0.91

Mem-Text Changing Grounder(our) GPT-4.1 high 36.80 18.00 42.67 19.33 28.00 16.00 8.47 5.97 3.92 9.88

Table 2: Accuracy and exploration cost of three baselines and Mem-ChangingGrounder(ours) on the
ChangingGrounding Benchmark under both high-resolution and low-resolution settings. Different
resolution setting is separated by a middle dividing line. The higher the accuracy and the lower the
cost, the better the performance of the method. The highest method performance and the lowest cost
are bolded. The cost in the table is measured in units of 1000 seconds.

Overall Unique Multiple Cost ↓

Method Model Res @0.25 @0.50 @0.25 @0.50 @0.25 @0.50 Ca Ctrans Crot Cm

Wandering Grounding GPT-4.1 low 24.80 10.80 30.67 10.67 16.00 11.00 44.48 9.88 8.61 18.49

Central Rotation Grounding GPT-4.1 low 16.80 6.00 19.33 9.33 13.00 1.00 18.00 0 1.64 1.64

Memory-Only Grounding GPT-4.1 low 20.80 10.00 22.67 10.67 18.00 9.00 0.24 0.56 0.36 0.91

Mem-Text Changing Grounder(ours) GPT-4.1 low 29.20 14.80 30.00 15.33 28.00 14.00 8.53 5.84 3.98 9.82

Wandering Grounding GPT-4.1 high 32.40 12.80 38.67 16.00 23.00 8.00 44.48 9.88 8.61 18.49

Central Rotation Grounding GPT-4.1 high 17.20 6.80 18.00 8.00 16.00 5.00 18.00 0 1.64 1.64

Memory-Only Grounding GPT-4.1 high 26.00 12.40 26.67 11.33 25.00 14.00 0.24 0.53 0.38 0.91

Mem-Text Changing Grounder(our) GPT-4.1 high 36.80 18.00 42.67 19.33 28.00 16.00 8.47 5.97 3.92 9.88

translations or rotations to gather new observations, thereby avoiding lengthy exploratory loops that380

yield little new information.381

In comparison, Wandering Grounding secures the second-highest accuracy at both resolution levels;382

however, its action cost is roughly five times larger, and its overall motion expense expands by a383

similarly substantial margin. The fundamental reason is that this method relies on wide-ranging384

roaming, compelling the robot to move repeatedly across the environment in extended back-and-forth385

sweeps. Although this exhaustive traversal allows the agent to accumulate a broader set of scene386

information and thereby enhance grounding accuracy, the very same coverage pattern obliges it to387

travel long distances and perform numerous actions, ultimately generating excessive overhead.388

Central Rotation Grounding keeps the robot at the scene center and performs a single complete389

rotation, an action that virtually eliminates any need for translation and reduces the total number of390

discrete movements to a very small figure, making it an exceptionally low cost approach. Nevertheless,391

because the robot surveys the environment from this lone, inherently constrained vantage point,392

whenever an object happens to be obscured from view, situated at a noticeably elevated or depressed393

height, or when the overall spatial arrangement is particularly intricate, a substantial portion of crucial394

visual information never reaches the camera sensor. This resulting information gap ultimately pushes395

its aggregate grounding accuracy to the lowest position among all the methods that were examined.396
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Memory-Only Grounding likewise functions at an lowest cost because the entire inference process397

draws exclusively on previously stored panoramic memories; after estimating the most probable target398

location, the robot performs only one brief, final adjustment. In scenarios where those memories are399

fully comprehensive and the physical environment has remained unchanged, its grounding accuracy400

can be relatively high. However, if the surroundings have shifted in any way or if the original memory401

coverage contains gaps, the complete lack of a secondary verification step and the absence of any402

mechanism for active error correction trigger a pronounced drop in performance, ultimately placing403

this approach well behind our method.404

When all evidence is taken together, our approach attains the highest grounding accuracy yet still keeps405

both action and motion costs firmly within manageable bounds, offering persuasive confirmation that406

memory-augmented strategies hold a decisive advantage in changing environments where stringent407

resource constraints demand a careful balance between efficiency and precision.408

Similar to VLM-Grounder, our method exhibits a gap between Acc@0.25 and Acc@0.50, which409

stems from inheriting VLM-Grounder’s core concept of projecting 2D images into 3D point clouds -410

a process where multiple potential noise sources exist, including the parameters, depth images, and411

both intrinsic and extrinsic camera matrices employed in this projection pipeline.412

Table 3: Memory strategy
Strategy @0.25 Ca Cm

w/o. Memory 35.2 31.94 19.31
w. Memory 36.8 8.47 9.88

Table 4: Fall back
Fallback @0.25 Ca Cm

w/o. Fallback 36.4 8.21 9.66
w. Fallback 36.8 8.47 9.88

4.3 Ablation Studies413

Memory Strategy Validation. To verify the effectiveness of our memory strategy, we conducted414

comparative experiments with a memory-free strategy where the system follows the original Wander-415

ing Grounding’s pose sequence to explore anchor objects in scene Sc without utilizing any memory.416

As presented in the table3, the experimental results demonstrate that while both approaches achieve417

comparable accuracy levels, the memory-free solution incurs significantly higher costs, with its418

resource consumption dramatically exceeding that of our memory strategy.419

Fallback. We conduct tests on our method after removing the fallback strategy. As presented in the420

table 4, the experimental results show that the accuracy and cost consumption with the fallback policy421

exhibit no significant difference compared to the method without it. However, from the perspective of422

system integrity, implementing the fallback policy ensures methodological completeness and enables423

coverage of edge cases in test samples.

Table 5: Multi-projection
Multi-view projection @0.25 Ca Cm

Baseline 22.4 4.81 3.06
+Multi-scan 28.0 8.52 9.85
+filter 36.8 8.47 9.88

Table 6: Different VLMs

VLMs @0.25 Ca Cm

GPT-4o 31.6 8.34 9.65
GPT-4.1 36.8 8.47 9.88

424

Multi-scan projection. To validate the effectiveness of key operations in the multi-view projection425

module, we conducted a two-step ablation study by sequentially adding operations to the baseline426

and observing the experimental results. As shown in the table 5, in the first step, we incorporated427

multi-view image acquisition through center rotation to the baseline. In the second step, we added the428

procedure for removing outliers in the multi-view ensemble point clouds. The results demonstrate429

that each operation contributes to significant accuracy improvements. Although the center rotation430

for multi-view acquisition incurs additional costs, it achieves a favorable balance between accuracy431

and cost by delivering substantial accuracy gains.432

Different VLMs. We compared the performance of the Mem-ChangingGrounder using different433

VLMs on the test data, specifically testing GPT-4o [31] and GPT-4.1 [32]. As shown in the table 6,434
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the difference in cost is not significant. However, GPT-4.1 achieves higher accuracy than GPT-435

4o [31]. This demonstrates that the capabilities of VLMs directly impact the performance of the436

Mem-ChangingGrounder.437

5 Conclusion438

In this work, we have reframed 3D visual grounding as an active, memory-driven problem and439

introduced ChangingGrounding—the first benchmark that couples changing scenes with explicit440

cost accounting—to foster research in this setting. Our Mem-ChangingGrounder demonstrates that441

leveraging memory and selective exploration can raise better localization accuracy while relatively442

cutting down exploration effort to baselines. We believe the dataset, task definition, and baseline suite443

released with this work will catalyze broader efforts toward deployable 3DVG, and we foresee future444

extensions that integrate continual memory updates, richer language understanding, and real-robot445

experiments in the wild. Details such as the full demo, failure analysis of the MCG modules, and a446

discussion of open problems will be provided in the supplementary material.447
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Appendix Overview and Organization583

This appendix provides supplementary details to support and extend the main paper. The organization584

of the appendix is as follows:585

1. Benchmark Statement (Section A): This section outlines the release status and usage586

policy of the our ChangingGrounding benchmark (CGB), and our Mem-ChangingGrounder587

(MCG) method are also provided to facilitate replication and validation of results.588

2. Spatial Relation-Aware Scanner (Section ??): This section presents a detailed description589

of the SARS module. It explains how the system interprets spatial relationships in user590

queries and adjusts camera viewpoints accordingly to retrieve the most informative target591

views.592

3. Multi-Scan Projection (Section ??): Inspired by VLM-Grounder, this section introduces593

the multi-scan projection approach, which combines multi-view point clouds. It elaborates594

on how reference point clouds are obtained and how noisy candidates are filtered out using595

distance constraints and language priors.596

4. VLM Prompts (Section ??): We provide the full list of vision-language prompts used in597

MCG, covering all modules including memory retrieval, spatial relation parsing, multi-view598

comparison, and fallback strategies. These prompts form a modular, interpretable interface599

for multi-stage reasoning.600

5. Cost Calculation for Methods (Section ??): This section details how exploration trajecto-601

ries and motion costs are computed for each method. The evaluation aligns with the cost602

metrics defined in the main text, and a note explains that all costs are reported in units of603

1,000 seconds (e.g., 9k = 9000s).604

6. More Results (Section ??): Additional results are presented to assess the robustness of605

MCG, including a comparison between using rendered vs. real images in memory, and a set606

of failure cases analyzing the limitations of VLM, SARS, SAM, and the projection pipeline.607

A complete example is shown to illustrate how MCG grounds a target object in a dynamic608

scene.609

7. Open problems (Section ??): We outline the current limitations of the CGB benchmark610

and the MCG method, including the lack of allocentric relations, the impact of rendering611

noise, and the dependency on external 2D models. Future improvements are discussed.612

8. Broader Impact (Section ?? The broader societal implications of our work are discussed,613

including potential applications in robotics and automation, ethical considerations, and the614

importance of open-source transparency for reproducibility and fairness.615

A Benchmark statement616

We publicly release the proposed CGB benchmark and its accompanying dataset on the Huggingface617

platform, making it freely accessible to the research community. The dataset will be regularly updated618

and maintained to ensure its accuracy and relevance. We hope this benchmark will encourage further619

research into 3D visual localization in dynamically changing environments.620

All files within the CGB benchmark are strictly intended for non-commercial research purposes and621

must not be used in any context that could potentially cause harm to society.622

To support reproducibility, we also provide benchmark testing examples for the proposed MCG623

method, along with detailed environment specifications and a complete execution pipeline to facilitate624

efficient replication and verification of experimental results. It is important to note that, at this stage,625

all available data in the CGB benchmark is used exclusively for testing purposes.626

B Spatial relation-aware scanner627

This section provides a more detailed description of the Spatial relation-aware scanner (SRAS). SRAS628

accepts a user query with an anchor-object image and its corresponding camera pose, and outputs629

images containing the target object while satisfying the specified query.SRAS operates in three main630
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stages: (1) it analyzes the spatial relations specified in the user query; (2) it selects subsequent camera631

poses according to those relations; and (3) it feeds the newly captured images into the VLMs to632

identify the correct target image that matches the query.633

B.1 Spatial relation parsing634

The user query, along with the target object category and anchor object category, is provided as input635

to the Vision-Language Models (VLMs), allowing them to infer the spatial relationship of the target636

object relative to the anchor object described in the query. For example, given the instruction "Please637

select the vase on the table," the VLMs would respond with "above," since the target object (vase) is638

positioned above the anchor object (table).639

B.2 Camera pose planning640

Based on the inferred spatial relationship, the camera pose of anchor-object image will be adjusted641

to obtain a series of new camera poses. Here, we uniformly define the camera pose orientation642

such that the Z-axis points into the image, the X-axis points to the right, and the Y-axis points643

downward. Up. First, the camera pose corresponding to the image containing the anchor object is644

normalized by aligning its Y-axis with the gravity direction. The camera is then translated slightly645

backward along the Z-axis to ensure a wider field of view. Next, the pose is rotated around its646

local Y-axis (which controls the left-right viewing direction) at multiple angles. For each of these647

Y-axis rotations, additional rotations are applied around the local X-axis (which controls the up-down648

viewing direction) in an upward direction to generate a set of upward-looking viewpoints. These649

poses collectively form a diverse set of upward trajectories. Down. The "down" case follows a650

process highly similar to the "up" case, with the key difference being the direction of rotation around651

the local X-axis (which controls the up-down viewing direction). Instead of rotating upward, the652

camera is rotated downward to produce a set of overhead viewpoints. This generates a diverse set of653

downward-looking trajectories. Horizontal and between. For spatial relations such as “horizontal”654

and “between,” the system first slightly translates the camera pose along its local Z-axis to obtain655

a broader field of view. It then interpolates the position to move the camera slightly closer to the656

center of the room, further expanding the observable area. Next, the system performs a 360-degree657

rotation around the camera’s local Y-axis (which controls the left-right viewing direction) to generate658

a diverse set of viewpoints covering various horizontal angles. At each rotation step, the camera is659

also slightly tilted downward along its local X-axis to better capture lower portions of the scene.660

B.3 Target image verification661

After obtaining a series of newly generated poses, we feed them into a rendering model to simulate662

corresponding camera views and generate images. These images are then stitched together and passed663

into VLMs, which identify the image that best matches the user’s query.664

C Multi-scan projection665

Inspired by VLM-Grounder, the multi-scan projection approach also aggregates multi-view point666

clouds to obtain the final point cloud. The entire pipeline can be divided into three stages: (1)667

obtaining a reference point cloud, (2) performing surround-view scanning to collect multi-view point668

clouds, and (3) removing outliers from the aggregated point cloud set. In the main text, we have669

clearly described the overall pipeline of the multi-view projection. Here, we provide a more detailed670

explanation of certain specific steps in the process.671

Reference point cloud. First, the image containing the target object is fed into GroundingDINO672

for object detection, and overly large 2D bounding boxes are filtered out (as GroundingDINO may673

occasionally return boxes covering the entire image). The centers of the remaining candidate boxes674

are then sequentially marked and passed into a vision-language model (VLM). The VLM, guided by675

the user query and additional contextual cues (e.g., "the object is located in the bottom-right corner"),676

identifies the most semantically relevant 2D bounding box corresponding to the target object. This677

selected bounding box, along with its center point—which likely lies on the object due to the VLM’s678

judgment—is then used as a positive point input to the SAM model to obtain a reference segmentation679
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mask. Finally, the mask is projected into a 3D point cloud using the camera parameters and the depth680

image, with the same denoising strategy of VLM-Grounder during projection.681

Removing outliers. In addition to the outlier removal strategy based on bounding box size sorting682

described in the main text, we also apply an initial denoising step during candidate box selection.683

Specifically, for a given view, we first extract all 2D candidate boxes and use them as prompts for684

SAM to generate segmentation masks. These masks are then projected into 3D point clouds. Among685

the resulting candidates, we select the one whose center is closest to that of the reference point cloud.686

However, due to the limitations of the 2D object detector and SAM, this nearest candidate may not687

always correspond to the true target object. To address this, we first input the reference image into a688

vision-language model (VLM) to assess whether the target object is particularly large or partially689

outside the camera view. If so, no additional filtering is applied. Otherwise, we enforce a spatial690

constraint requiring that the center of the selected candidate point cloud lies within 0.25 meters of the691

reference center; this helps prevent the inclusion of significant noise points unrelated to the target692

object.693

D Open problems694

We present CGB as the first benchmark for evaluating 3D visual grounding in dynamically changing695

scenes and introduce MCG as a strong reference method. Nevertheless, both still exhibit the following696

limitations.697

D.1 Limitations of the CGB Benchmark698

At present, our CGB dataset models only the relative positional changes between the target and its699

surroundings, without accounting for critical factors such as lighting variations, object appearance at-700

tributes (e.g., color, material, deformation), or dynamic scene interactions. Moreover, its repertoire of701

spatial relations lacks allocentric descriptions like “Object A is in front of Object B.” These omissions702

narrow the benchmark’s breadth and depth when assessing an agent’s cross-scene generalization and703

robustness. Future work can address these gaps by enriching multimodal annotations, introducing704

additional dimensions of variation, and incorporating allocentric relations, thereby expanding the705

dataset’s scale and diversity and enhancing CGB’s applicability and challenge in real-world dynamic706

environments.707

D.2 Limitations of the MCG method708

Limitations of VLM capability. MCG relies heavily on the underlying Vision–Language Model709

(VLM) to locate target objects in image sequences according to the analysis requirements. As710

demonstrated by the ablation studies above, the strength of the VLM has a decisive impact on MCG’s711

final grounding accuracy. If the VLM is insufficiently capable—or if the visual information in712

real-world scenes is unusually complex—MCG’s performance can deteriorate. Nevertheless, because713

VLM technology is advancing rapidly, we can replace the current module with more powerful714

models in the future to further enhance performance. Noise from rendered images. During715

the experiments, MCG consistently feeds rendered RGB-D images into the vision-language model716

(VLM) for inference, or uses them for SAM-based segmentation, projection, and related processes.717

However, the rendering process based on mesh files introduces various types of noise, including718

artifacts in the RGB images and inaccuracies in the depth maps. Moreover, there may be inherent719

differences in how VLMs process real versus rendered images. These factors can negatively affect720

the grounding accuracy. Noise introduced by 2D models. MCG depends on 2-D object detectors721

and segmentation networks to filter candidate images and perform the final projection. Although722

state-of-the-art models such as GroundingDINO and SAM are highly capable, they still exhibit missed723

detections, false positives, imprecise bounding boxes, and segmentation errors. These imperfections724

propagate through the pipeline and ultimately undermine the accuracy of the grounding results.725

Future work Despite these limitations, we believe that our work on MCG and the CGB benchmark726

provides a strong foundation for future research in the field of grounding task in changing scene.727

We hope that our contributions will inspire researchers to explore new methods and techniques to728

address the challenges posed by dynamic scenes. Specifically, we encourage the community to729

focus on the following open problems: (1) Improving VLM Robustness: Developing more robust730

Vision–Language Models that can handle complex real-world visual information and reduce the731
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impact of noise; (2) Enhancing Multimodal Integration: Exploring ways to better integrate multimodal732

data (e.g., combining visual, linguistic, and spatial information) to improve grounding accuracy;733

(3)Expanding Benchmark Diversity: Contributing to the expansion of the CGB benchmark by adding734

more diverse scenarios, including variations in lighting, object appearance, and dynamic interactions;735

(4)Reducing Noise in Rendered Data: Investigating methods to minimize the noise introduced during736

the rendering process and to bridge the gap between real and rendered images; (5)Advancing 2D-737

to-3D Projection Techniques: Improving the accuracy and reliability of 2D object detection and738

segmentation models to enhance the overall grounding performance. We hope that our work will serve739

as a catalyst for further research in this exciting and challenging domain. By addressing these open740

problems, we can collectively push the boundaries of 3D visual grounding in changing environments741

and develop more effective and robust solutions.742

E Broader impact743

This study systematically introduces a new task for changing scene 3D visual grounding task, releasing744

the open benchmark CGB together with a strong reference method, MCG. The proposed technology745

could markedly improve logistics and service robots’ perception–decision loop efficiency in complex,746

dynamic environments, thereby accelerating upgrades in smart manufacturing and supply-chain747

management. Nevertheless, rapid advances in automation may, in the short term, displace low-skill748

positions such as manual handling and sorting, prompting shifts in the employment structure. To749

balance technological progress with social inclusiveness, we urge governments and industry to launch750

joint reskilling programmes that equip affected workers with digital competencies. To lower the751

research threshold and enable independent fairness audits, we have fully open-sourced our code, data,752

and evaluation scripts under the MIT license; all data are drawn from public or simulated scenes753

and contain no personally identifiable information. We believe that open-source collaboration and754

responsible governance will allow dynamic 3D visual grounding technology to serve society fairly755

and sustainably.756

F VLM prompts757

For the baseline methods, we use the same prompts as those employed in VLM-Grounder. For the758

MCG method, we introduce several additional prompts, including those designed for the memory759

retrieval image module, prompts used to compare whether the target object has moved between760

images., prompts used in SRAS, and prompts applied in the multi-scan projection process. We will761

explain each of them in the following sections.762

The memory_retrieval_prompt_for_unverifiable_queries selects the top 3 images that clearly763

capture the anchor object from a video sequence when no reliable grounding information is available.764

In contrast, the memory_retrieval_prompt_for_verifiable_queries performs a two-stage reasoning765

process: it first searches for images that satisfy the query constraints and falls back to identifying766

the target object if constraints are unmet. The oss_prompt_for_unverifiable_queries focuses767

on selecting the single image that most clearly and completely depicts the target object from a768

360-degree scan, while the oss_prompt_for_verifiable_queries incorporates a three-step reasoning769

strategy, identifying the earliest image containing the anchor and then limiting the search space for770

target localization accordingly. The relation_parsing_prompt is used to infer the spatial relation771

(e.g., up, down, near, far, between) between the target and anchor objects from the query. The772

sars_choose_target_prompt performs target selection under a 360-degree rotation by evaluating773

multiple views and returning the most confident match. The compare_prompt determines whether774

two images captured from the same pose show the target object at the same position, supporting775

consistency checks. The fallback_prompt implements a robust two-step procedure: locating a776

query-matching image if available, or falling back to the clearest image showing the object class.777

The get_good_view_prompt is used to retrieve up to four images that provide the best views of a778

reference object based on a reference image with a bounding box. Finally, the bboxchoose_prompt779

refines object selection by identifying the most probable target object among multiple candidate780

boxes, integrating query content and spatial descriptions. Together, these prompts provide a781

structured, interpretable, and modular interface for vision-language agents to perform complex782

multi-view spatial reasoning and object grounding tasks. The textbflimit_prompt guides the VLM to783

assess whether the target object is overly large or partially occluded, serving as a prior for filtering784
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unreliable candidate point clouds. =@p1.0@785

786

memory_retrieval_prompt_for_unverifiable_queries787

788

You are an intelligent assistant proficient in analyzing images. Given a series of indoor room images789

from a video, you need to analyze these images and select the best 3 images. Each image has an790

ID in the upper left corner indicating its sequence in the video. Multiple images may be combined791

and displayed together to save the place. The anchor object is {anchor_class}. If there are some792

images that are very similar, only select the clearest one to participate in the further selection793

process. Select the best 3 images from the remaining images according to the following rule: Rule794

1: Select those images from the remaining ones that can clearly display the anchor object until the795

total number of selected images reaches 3. Please reply in json format, including "reasoning" and796

"selected_image_ids":797

{798

"reasoning": "Your reasoning process", // Your thinking process regarding the selection task799

"selected_image_ids": ["00045", "00002", "..."], // A list of the IDs of the best 3 images selected800

according to the rules. Note that the returned IDs should be in the form of "00045", not "00045.color",801

and do not add any suffix after the numbers.802

"unique_question": 6 // This is an independent question. Regardless of any other factors, only look803

for which image among all those provided captures the object {targetclass} most clearly. If none is804

found, return -1.805

}806

Now start the task: There are {num_view_selections} images for you to select from.807

808

memory_retrieval_prompt_for_verifiable_queries809

810

Imagine that you are in a room and tasked with finding a specific object. You already know the query811

content: {query}, the anchor object class: {anchorclass}, and the target object class: {targetclass}.812

The provided images are obtained by extracting frames from a video. Your task is to analyze these813

images to locate the target object described in the query.814

You will receive multiple images, each with an ID marked in the upper left corner to indicate its order815

in the video. Adjacent images have adjacent IDs. Note that, to save space, multiple images may be816

combined and displayed together. You will also be given the query statement and a parsed version817

specifying the target object class and conditions.818

Your task is divided into two main steps:819

Step 1: Based on the query and associated conditions, determine whether any of the provided images820

contain the target object that satisfies the requirements. If found, return the corresponding image ID;821

if not, return -1.822

Step 2: If no matching image is found in Step 1, ignore the query content and examine all images823

to see if any clearly capture an object of class {targetclass}. If such an image exists, return its ID;824

otherwise, return -1.825

Please note that the query statement and conditions may not be fully satisfied in a single image, and826

they may also contain inaccuracies. Your goal is to find the object that most likely satisfies the query.827

If multiple candidates exist, choose the one you are most confident about.828

Your response should be a JSON object containing the following fields:829

830

{831

"reasoning": "Your reasoning process", // Explain how you judged and located the target object. If832

cross-image reasoning is used, specify which images were involved and how.833

"find_or_not": true, // Return true if a suitable image matching the query is found, otherwise return834

false.835

"target_image_id": 4, // Return the image ID that best satisfies the query and conditions. If none836

found, return -1.837
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"anchor_image_id": 6, // Return the ID of the image where the anchor object is most clearly visible.838

"extended_description": "The target object is a red box located in the lower left corner of the image.",839

// Describe the target object in the selected image, focusing on color and position.840

"unique_question": 6 // This is an independent question. Regardless of other factors, select the image841

that most clearly captures an object of class {targetclass}. If none, return -1.842

}843

844

Now start the task:845

There are {num_view_selections} images for your reference.846

The following are the conditions for the target object: {condition}847

848

oss_prompt_for_unverifiable_queries849

850

Imagine that you are in a room and tasked with finding a specific object. You already know the query851

content: {query}, the anchor object class: {anchorclass}, and the target object class: {targetclass}.852

The provided images are frames extracted from a video in which the camera performs a full 360-853

degree rotation around a specific point. Your task is to analyze these images to locate the target object854

described in the query.855

You will receive multiple images, each with an ID marked in the upper left corner indicating its856

sequence in the video. Adjacent images have adjacent IDs. To save space, multiple images may be857

combined and displayed together. Additionally, you will be provided with the query statement and its858

parsed version, which specify the target class and grounding conditions.859

Your goal is to find the image that most clearly and completely captures the target object described by860

the query. The conditions may not be fully accurate or verifiable from a single image, so the correct861

object may not satisfy all of them. Try your best to identify the object that most likely meets the862

conditions. If multiple candidates appear correct, choose the one you are most confident about.863

While checking each image, consider different views throughout the 360-degree rotation. If you864

find the target object in an image, also examine whether other images capture the same object more865

clearly or completely, and return the best one. Your answer should be based on the image where the866

target object is most clearly and completely visible.867

Please reply in JSON format, structured as follows:868

869

{870

"reasoning": "Your reasoning process", // Explain the process of how you identified and located the871

target object. If reasoning across multiple images is used, explain which images were referenced and872

how.873

"target_image_id": 1, // Replace with the actual image ID (only one) that most clearly captures the874

target object.875

"reference_image_ids": [1, 2, ...], // A list of image IDs that also contain the target object and helped876

in reasoning.877

"extended_description": "The target object is a red box. It has a black stripe in the middle.", //878

Describe the target object’s appearance based on the selected image. Color and features only; do not879

include position.880

"extended_description_withposition": "The target object is a red box located in the lower left corner881

of the image." // Describe the target object with both appearance and spatial position in the image.882

}883

884

Now start the task:885

There are {num_view_selections} images for your reference.886

Here is the condition for the target object: {condition}887

888

oss_prompt_for_verifiable_queries889

890
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Imagine that you are in a room with the task of finding specific objects. You already know the891

query content: {query}, the anchor object category: {anchorclass}, and the target object category:892

{targetclass}. The provided images are extracted frames from a video that rotates around a certain893

point. Each image is marked with an ID in the top-left corner to indicate its sequence in the video.894

Adjacent images have adjacent IDs. For space efficiency, multiple images may be combined and895

displayed together.896

You will also receive a parsed version of the query, which clearly defines the target object category,897

anchor object category, and grounding conditions.898

Your task consists of the following three steps:899

Step 1: Based on the anchor object category, determine whether any of the provided images clearly900

capture the anchor object. If no such image is found, return -1 directly.901

Step 2: If Step 1 is successful, return the smallest image ID (denoted as min_ID) among the images902

that clearly capture the anchor object.903

Step 3: Among the images with IDs from 0 to min_ID, try to find an image that clearly captures the904

target object and satisfies the query content and conditions. If such an image is found, return its ID;905

otherwise, return -1.906

Note: The query statement and conditions may not be perfectly accurate or fully visible in a single907

image. Try your best to locate the object that is most likely to match these conditions. If multiple908

objects are plausible, select the one you are most confident about.909

Here is an example: In Step 1, images 12, 13, 14, and 15 all clearly capture the anchor object, so910

Step 2 yields min_ID = 12. In Step 3, no image from ID 0 to 12 meets the query requirements, so911

target_image_id = -1.912

Please reply in JSON format as follows:913

914

{915

"reasoning": "Your reasoning process", // Explain the reasoning process across all three steps. If916

cross-image reasoning is involved, specify which images were used and how.917

"anchor_image_id": 12, // Return the smallest image ID that clearly captures the anchor object. If918

none is found, return -1.919

"target_image_id": 4, // If anchor_image_id = -1, then return -1 directly. Otherwise, return the image920

ID ( anchor_image_id) that best satisfies the query. If none found, return -1.921

"extended_description": "The target object is a red box located in the lower-left corner of the image.",922

// Describe the target object in the image with ID = target_image_id. If target_image_id = -1, return923

None.924

"unique_question": 6 // This is an independent question. Regardless of other factors, return the ID of925

the image that most clearly captures an object of class {targetclass}. If none found, return -1.926

}927

928

Now start the task:929

There are {num_view_selections} images for your reference.930

Here are the conditions for the target object: {condition}931

932

relation_parsing_prompt933

934

You are an agent who is highly skilled at analyzing spatial relationships. You are given a query:935

{query}, a target object: {classtarget1}, and an anchor object: {anchorclass}. Your task is to determine936

the spatial relationship of the target object relative to the anchor object based on the query content.937

The possible spatial relationships are defined as follows:938

- up: the target object is above the anchor object // the target object is lying on the anchor object // the939

target object is on top of the anchor object. - down: the target object is below the anchor object // the940

target object is supporting the anchor object // the anchor object is on top of the target object. - near:941
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the target object is close to the anchor object. - far: the target object is far from the anchor object. -942

between: the target object is between multiple anchor objects.943

Please reply in JSON format with one key, "reasoning", indicating the spatial relationship you944

determine:945

946

{947

"reasoning": "up" // Return the spatial relationship type (up, down, near, far, or between) that best948

describes the position of the target object relative to the anchor object.949

}950

951

Now start the task.952

953

sars_choose_target_prompt954

955

Imagine you’re in a room tasked with finding a specific object. You already know the anchor object956

class: {anchorclass}, the target object class: {targetclass}, and the query the target object should957

match: {query}. The provided images are captured during a 360-degree rotation around the anchor958

object.959

You are given a sequence of indoor-scanning video frames and a query describing a target object960

in the scene. Your task is to analyze the images and locate the target object according to the query961

content.962

Each image is annotated with an ID in the top-left corner indicating its sequential position in the963

video. Adjacent images have adjacent IDs. For space efficiency, multiple images may be combined964

and displayed together. You are also provided with a parsed version of the query, which lists the965

conditions that the target object should satisfy.966

After filtering and comparison, your goal is to identify the image ID that contains the target object967

most clearly based on the query and conditions. Note that these conditions may not be fully observable968

in a single image and might be imprecise. The correct object may not meet all conditions. Try to969

find the object that most likely satisfies them. If multiple candidates seem plausible, choose the one970

you are most confident about. If no object meets the query criteria, make your best guess. Usually,971

the target object appears in several images—return the one where it is captured most clearly and972

completely.973

Please reply in JSON format with the following structure:974

975

{976

"reasoning": "Your reasoning process", // Explain how you identified and located the target object. If977

you used multiple images, describe which ones and how they contributed to your decision.978

"target_image_id": 1, // Replace with the actual image ID that most clearly shows the target object.979

Only one ID should be provided.980

"reference_image_ids": [1, 2, ...], // A list of other image IDs that also helped confirm the target981

object’s identity.982

"extended_description": "The target object is a red-colored box. It has a black stripe across the983

middle.", // Describe the target object’s color and notable features. No need to mention its position.984

"extended_description_withposition": "The target object is a red-colored box located in the lower left985

corner of the image." // Describe both appearance and position of the object in the selected image.986

}987

988

Now start the task:989

There are {num_view_selections} images for your reference.990

Here is the condition for the target object: {condition}991

992

compare_prompt993

994
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You are an intelligent assistant who is extremely proficient in examining images. You already know995

the target object category: {target_class}. Now I will provide you with two images. You need to996

determine whether the target objects captured in these two images are in the exact same position.997

Since these two images are taken from the same pose, you only need to check whether the target998

objects are in the same position within the images.999

For example, if the target object is a table and you can clearly see that the table is located in the1000

middle of both images, then the target objects captured in these two images are considered to be in1001

the same position.1002

Please reply in JSON format with two keys: "reasoning" and "images_same_or_not":1003

1004

{1005

"reasoning": "Your reasons", // Explain the basis for your judgment on whether the target objects1006

captured in these two images are in the same position.1007

"images_same_or_not": true // It should be true if you think the target objects captured in the two1008

images are in the same position. If you find that the positions of the target objects captured in the two1009

images are different, or if the target object is captured in the first image but not in the second, then it1010

should be false.1011

}1012

1013

fallback_prompt1014

1015

Imagine you are in a room tasked with finding a specific object. You already know the query content:1016

{query}, and the target object category: {targetclass}. The images provided to you are frames1017

extracted from a video that rotates around a particular point. Each image is marked with an ID in the1018

top-left corner to indicate its sequence in the video, and adjacent images have consecutive IDs. For1019

space efficiency, multiple images may be combined and displayed together.1020

Your task consists of two steps:1021

Step 1: Locate an image that contains the target object which satisfies the query statement and its1022

associated conditions. The image must clearly and completely capture the target object. If such an1023

image is found, return its ID and skip Step 2.1024

Step 2: If no image meets the query-based requirements, ignore the query and check all provided1025

images. Identify an image that clearly captures the object of category {targetclass}. If such an image1026

is found, return its ID. If none are found, return -1.1027

Please reply in JSON format with the following structure:1028

1029

{1030

"reasoning": "Your reasoning process", // Explain the reasoning behind both steps of your1031

decision-making process.1032

"match_query_id": 12, // Return the image ID that satisfies Step 1. If no image matches the query,1033

return -1.1034

"object_image_id": 4, // If Step 1 is successful, return -1 here. Otherwise, return the ID of the image1035

that clearly captures the object in Step 2. If not found, return -1.1036

"extended_description": "The target object is a red box located in the lower-left corner of the image."1037

// Provide a brief description of the target object as seen in the selected image. Focus on visual1038

features such as color and location within the image.1039

}1040

1041

Now start the task:1042

There are {num_view_selections} images for your reference.1043

1044
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get_good_view_prompt1045

1046

You are an excellent image analysis expert. I will now provide you with several images, each marked1047

with an ID in the upper left corner. These images are captured by rotating around a target object1048

{target} that is framed with a green bounding box in the reference image. The reference image is also1049

provided, and it contains the target object {target} enclosed by a green box, with the word "refer"1050

shown in red in the upper left corner.1051

Your task is to determine which three (at most four) of the provided images capture the target object1052

from the reference image most clearly and completely. Please note that, for layout efficiency, multiple1053

images may be displayed together in a single composite image.1054

Your response should be in JSON format, containing the following fields:1055

1056

{1057

"reasoning_process": "Your reasoning process", // Explain how you select the images that best1058

capture the target object framed in the reference image.1059

"image_ids": [2, 4, 5, 7] // Replace with the actual image IDs. Return up to four IDs corresponding1060

to the images that, in your opinion, capture the target object most clearly and completely.1061

}1062

1063

Now start the task:1064

There are {num_images} candidate images and one reference image for you to choose from.1065

1066

bboxchoose_prompt1067

1068

Great! Here is the detailed version of the picture you’ve selected. There are {num_candidate_bboxes}1069

candidate objects shown in the picture. I have annotated an object ID at the center of each object with1070

white text on a black background. You already know the query content: {query}, the anchor object:1071

{anchorclass}, and the target object: {classtarget}. In addition, you will be provided with an extended1072

description: {description}, which includes the position of the target object in the picture.1073

Your task consists of two main steps:1074

Step 1: The candidate objects shown in the picture are not necessarily all of the target class {classtar-1075

get}. You must first determine which of them belong to the class {classtarget}.1076

Step 2: Among the identified candidate objects of class {classtarget}, select the one that best matches1077

both the query content and the extended description (including position).1078

Please reply in JSON format with two fields:1079

1080

{1081

"reasoning": "Your reasoning processing", // Describe your full reasoning process in three parts:1082

(1) how you identified candidate objects of the target class; (2) how you verified them against the1083

extended description; and (3) how you selected the final object ID.1084

"object_id": 0 // The object ID you select. Always provide one object ID from the picture that you1085

are most confident about, even if you think the correct object might not be present.1086

}1087

1088

Now start the task: There are {num_candidate_bboxes} candidate objects in the image.1089

1090

limit_prompt1091

1092

Great! Now you will perform an expert judgment on the visibility of a target object in the provided1093

image.1094
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You already know the target object category: {targetclass}. You will be shown one image containing1095

this object class.1096

Your task consists of two main steps:1097

Step 1: Some object categories, such as beds, sofas, closets, cabinets, shelves, etc., are considered1098

inherently large. If the target object belongs to this group of large categories, directly return "limit":1099

true without proceeding to the next step.1100

Step 2: If the target class is not considered large, examine the image and determine whether the target1101

object appears to be fully captured. If you believe the object is incomplete or partially outside the1102

frame, return "limit": true; otherwise, return "limit": false.1103

Please reply in JSON format with two fields:1104

1105

{1106

"reasoning": "Your reasoning process", // Describe your reasoning clearly: (1) whether the category1107

is considered large, and (2) if not, how you judged the completeness of the object in the image.1108

"limit": false // Return true only if the object is large, or if it is not large but appears incomplete in the1109

image.1110

}1111

1112

Now start the task: You are given one image and the target object category: {targetclass}.1113

1114

G Cost calculation for methods1115

For both the baseline methods and our proposed MCG approach, the robot’s initial camera pose1116

is assumed to be at the center of the room (see the main text for the formal definition of this key1117

assumption). For MCG, the full camera trajectory starts from the initial pose and follows a sequence1118

of new poses generated by the MCG pipeline. The cost of the entire trajectory is computed according1119

to the evaluation metrics defined in the main paper. For the WG and CRG baselines, all images1120

are pre-captured and sequentially indexed. We first identify the image whose pose is closest to the1121

initial camera pose and denote its index as n. The camera trajectory then starts from the initial pose1122

and proceeds through the poses of images with indices n, n+ 1, n+ 2, . . ., wrapping around from1123

the last index back to 1 as needed, and ending at index n − 1. The cost is computed based on the1124

same evaluation procedure. For the MOG baseline, which only utilizes memory images, the camera1125

trajectory consists of only two poses: the initial pose and the pose of the target image. Its cost is1126

similarly computed using the defined metrics.1127

H More results1128

H.1 Inference time and success rate1129

H.2 Rendered vs. real images in memory1130

In previous experiments, both the memory and exploration images used by our system were rendered1131

images. However, the effectiveness of vision-language models (VLMs) on rendered images—in1132

terms of recognition, reasoning, and analysis—remains unclear. In this section, we explore the impact1133

of replacing memory images with real-world images. Specifically, we randomly sample 50 instances1134

from a pool of 250 and observe the final localization results. Experimental findings indicate that using1135

rendered images in memory does not significantly affect the overall grounding accuracy. However,1136

this should not be interpreted as rendered images outperforming real ones. In repeated experiments,1137

we observed slight fluctuations in accuracy between the two settings. These results suggest that using1138

rendered images for memory introduces negligible impact on overall performance.1139
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Table 7: Comparison between using rendered and real images in memory.

Version @0.25 A_c M_c

w. rendering 28 1.74 2.08

w/o. rendering 24 1.62 1.96

H.3 Error case illustration1140

In this section, we present concrete failure cases of key modules in the MCG framework.1141

VLMs failure in memory retrieval Owing to the inherent limitations of the VLM, it may fail to1142

correctly identify the anchor object in image sequences from memory, thereby causing a cascade of1143

errors in the subsequent grounding pipeline1144

VLMs failure in target image retrieval Relational queries involving horizontal spatial reasoning1145

(e.g., “select the chair closest to the table”) impose higher demands on the inference capability1146

of vision-language models (VLMs). Such relationships require the model to make fine-grained1147

comparisons based on relative spatial distances rather than absolute object properties. The difficulty1148

is further amplified in cluttered scenes where multiple distractor objects are present, and the distance1149

difference between the correct target and nearby alternatives is minimal. In these cases, the VLM is1150

more prone to incorrect selections due to the subtlety of the distinction required.1151

Failure in SARS The method used in SARS for acquiring new observation viewpoints can result in1152

limited viewing angles, which may prevent the target object from entering the field of view—especially1153

in cases where the object is positioned too low. Moreover, since we rely on rendered images, the1154

presence of rendering noise further exacerbates the issue. In certain viewpoints, the rendered images1155

may contain large blank or missing regions, making them unusable for grounding.1156

Failure in SAM and projection Although the SAM segmentation model demonstrates strong overall1157

performance, it still introduces a considerable amount of noise. During our experiments, we observed1158

that SAM frequently includes pixels unrelated to the target object in the final segmentation mask.1159

This over-segmentation adversely affects the subsequent 3D projection process, ultimately leading1160

to reduced accuracy in the localization of the 3D bounding box. In addition, since our experiments1161

are conducted on rendered images, the resulting RGB-D data often contain missing or incomplete1162

regions, which further impact the precision of the 3D bounding box estimation. Although we have1163

attempted to denoise the rendered images as much as possible—especially by removing abrupt pixel1164

changes in the depth maps—some residual noise and artifacts may still persist, continuing to pose1165

challenges to accurate 3D localization.1166
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Wrong VLM choise Ground truth1167

Figure 5: VLMs failure in memory retrieval, the anchor object is box.

Wrong VLM choice CorrectAnchor1168

Figure 6: VLMs failure in target image retrieval, the user query is to choose the cabinet near
the box.

Wrong VLM choise Correct1169

Figure 7: Failure in SARS, the user query is to find the cushion that is farthest from the pc.

Wrong SAM result Rendering noise1170

Figure 8: Failure in SAM and projection.



H.4 Full demo1171

In this section, we present a representative and structurally concise example to intuitively illustrate1172

how MCG effectively leverages memory information for efficient and accurate target localization1173

in dynamic environments. The example highlights the central role played by the vision-language1174

model (VLM) throughout the entire execution process. We provide a detailed depiction of the1175

VLM’s reasoning at each step, demonstrating how it progressively converges on the target object1176

through multi-round perception and decision-making, thereby showcasing its capabilities in semantic1177

understanding and spatial reasoning.1178
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Memory images 
preselection

&
Dynamic stitching "query": "choose the toilet that is under the flush"

"target_class": "toilet"
"anchor_class": "flush"

memory_retrieval_prompt_for_verifiable_queries

{'reasoning': "The query asks for a toilet that is under the flush, with the anchor 
object being the flush. I first scanned the images for the presence of a toilet and a 
flush. The clearest images showing both the toilet and the flush are those in the 
range of IDs 006 to 076. In these images, the flush (the rectangular panel above the 
toilet) is visible directly above the toilet, which matches the condition 'under the 
flush.' Among these, image 006 provides a clear view of both the flush and the toilet, 
with the flush directly above the toilet, making it easy to confirm the spatial 
relationship. For the anchor object (flush), image 006 also provides a clear view, but 
image 081 shows the flush even more clearly, as it is more centered and less 
obstructed. For the unique question, the toilet is most clearly visible in image 073, 
where the entire bowl is unobstructed and well-lit.", 'find_or_not': True, 
'target_image_id': 6, 'anchor_image_id': 81, 'extended_description': 'The target 
object is a white toilet located in the lower right corner of the image, with the flush 
panel directly above it on the wall.', 'unique_question': 73}

Memory retrieve

"target_class": "flush"

{
"reasoning": "In both images, the flush (the rectangular button panel above the toilet) 
is located in the same position on the wall, just above the toilet seat and below the 
two round meters and a small round sign. The orientation and placement relative to 
the other objects (such as the mirror, sink, and wall outlet) are consistent between 
the two images. There is no noticeable shift or change in the position of the flush 
within the frame.",
"images_same_or_not": true
}

Stay static or not

compare_prompt

"target_class": "toilet"

{
"reasoning": "In both images, the toilet is located in the lower right corner of the 
image, adjacent to the bathtub and near the same set of objects (such as the toilet 
paper holder and cleaning supplies). The angle and position of the toilet relative to 
the other bathroom fixtures are consistent between the two images. The only 
noticeable difference is the toilet seat cover design, but the position of the toilet itself 
remains unchanged.",
"images_same_or_not": true
}

Stay static or not

compare_prompt

limit_prompt

Big stuff or occluded stuff

"target_class": "toilet"

{'reasoning': 'Step 1: The target object is a toilet, which is not considered a relatively 
large object like a bed, sofa, or cabinet, so proceed to Step 2. Step 2: In the provided 
image, only a portion of the toilet is visible, with the seat and part of the bowl shown, 
but the full structure (such as the tank, base, and full outline) is not completely 
captured. Therefore, the toilet is not photographed completely.', 'limit': True}

Figure 9: Case of the MCG grounding part-1.
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Full-circle

Refer point cloud center Full circle rescan New poses

get_good_view_prompt

"target_class": "toilet"

{
  "reasoning_process": "To determine which images best capture the target object 
shown in the reference image, I first compared each candidate image against the 
green-bounded object in the reference. I looked for views that contain the object 
fully within the frame, with minimal occlusion, good lighting, and a clear perspective 
that reveals the object's shape and structure. Images 1, 2, 4, and 5 were selected 
because they present the object in a well-centered and unobstructed manner, 
showing key visual details such as contour, texture, and orientation, while other 
images were either partially cropped, blurred, or blocked by other objects.",
  "image_ids": [1, 2, 4, 5]
}

Get good multi-views

Compute the minimum Euclidean 
distance

Reference Optimal candidates 

Filter

Final result 

Figure 10: Case of the MCG grounding part-2.
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