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Abstract

Large Multimodal Models (LMMs) excel in visual-language
tasks by leveraging numerous visual tokens for fine-grained
visual information, but this token redundancy results in
significant computational costs. Previous research aimed
at reducing visual tokens during inference typically lever-
ages importance maps derived from attention scores among
vision-only tokens or vision-language tokens to prune to-
kens across one or multiple pruning stages. Despite this
progress, pruning frameworks and strategies remain sim-
plistic and insufficiently explored, often resulting in sub-
stantial performance degradation. In this paper, we pro-
pose VFlowOpt, a token pruning framework that introduces
an importance map derivation process and a progressive
pruning module with a recycling mechanism. The hyper-
parameters of its pruning strategy are further optimized
by a visual information flow-guided method. Specifically,
we compute an importance map for image tokens based on
their attention-derived context relevance and patch-level in-
formation entropy. We then decide which tokens to retain
or prune and aggregate the pruned ones as recycled to-
kens to avoid potential information loss. Finally, we ap-
ply a visual information flow-guided method that regards
the last token in the LMM as the most representative signal
of text-visual interactions. This method minimizes the dis-
crepancy between token representations in LMMs with and
without pruning, thereby enabling superior pruning strate-
gies tailored to different LMMs. Experiments demonstrate
that VFlowOpt can prune 90% of visual tokens while main-
taining comparable performance, leading to an 89% reduc-
tion in KV-Cache memory and 3.8 X faster inference.

1. Introduction

Large Multimodal Models (LMMs) [3, 8, 22, 23] have
attained remarkable performance in tasks such as visual
question answering [2, 13] and multimodal reasoning [45,
46], making them indispensable for applications like au-
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Figure 1. VFlowOpt Performance and Efficiency. Our
VFlowOpt significantly outperforms other LMM token reduction
methods across three general benchmarks (MME, MMStar, and
MMBench) on LLaVA-OneVision-7B. It achieves zero perfor-
mance degradation when reducing 50% of visual tokens. Further-
more, when retaining only 10% of the tokens, it achieves 90% of
the original performance while reducing KV-Cache memory usage
by 89% and accelerating inference by 3.8 x.

tonomous driving [9, 32, 36] and robotics [19, 21, 25].
To capture fine-grained visual details, modern LMMs
treat images as token sequences, with models such as
LLaVA-1.5 [22] processing hundreds of tokens and LLaVA-
OneVision [18] handling up to several thousand tokens.
Nonetheless, the increasing quantity of visual tokens sig-
nificantly magnifies computational cost, memory usage,
and inference time, creating a critical bottleneck for LMM
deployment, particularly in resource-constrained environ-
ments or latency-sensitive scenarios.

To alleviate these constraints, recent work explores vari-
ous methods for reducing the number of visual tokens dur-
ing inference. Most existing approaches evaluate the impor-
tance of visual tokens in LMMs using attention-based im-
portance maps derived either from vision-only tokens [41,
50] or from text-visual interactions [37, 53]. Following a
predefined pruning ratio, visual tokens are pruned in a sin-
gle stage [34] or progressively across multiple stages [43],
often with heuristic strategies applied uniformly across dif-
ferent LMMs. Although promising, these methods are sim-



plistic and underexplored, with coarse-grained pruning of-
ten causing significant performance drops due to lacking fit-
ness for different LMMs models’ characteristics.

In response to these limitations, we propose a novel to-
ken pruning framework, VFlowOpt, that devises strategies
for importance map derivation and tokens selection with a
visual information flow-guided method to further optimize
it. Specifically, the pruning framework consists of impor-
tance map computation and a progressive pruning module
with a recycling mechanism. We decompose the importance
map of image tokens into two aspects: the importance of to-
kens in the visual context, reflected by their attention maps,
and the richness of visual information in each image patch,
captured by its information entropy. Based on the weighted
summation of these two factors, we determine which tokens
to retain or prune across multiple pruning stages and intro-
duce a recycling mechanism to aggregate pruned tokens to
avoid potential information loss. Built with this pruning
strategy with several hyperparameters, a key ingredient is
the visual information flow-guided method to optimize the
pruning strategy, which treats the last token in each prun-
ing stage as the most representative signal of text-visual in-
teractions during inference. By minimizing the difference
between token representations in LMMs with and with-
out pruning, VFlowOpt ultimately delivers superior pruning
strategies specifically tailored to different LMMs.

Comprehensive experiments on multiple vision-
language benchmarks validate the efficacy of VFlowOpt.
In particular, it substantially lowers computational cost
while preserving competitive performance. As shown
in Fig. 1, VFlowOpt can prune 50% of visual tokens
with negligible performance loss. Moreover, it can prune
90% of visual tokens while maintaining 90% of the
model’s performance, resulting in an 89% reduction in
KV-Cache memory usage and a 3.8 x speedup in inference.
These experimental results highlight its effectiveness as
a practical and efficient solution for deploying LMMs in
resource-constrained environments.

2. Related Work

2.1. Large Multimodal Models

Large Multimodal Models (LMMs) [3, 8, 22, 23] ex-
tend the reasoning capabilities of Large Language Models
(LLMs) [4, 33, 39, 40] to vision-language tasks by inte-
grating a pre-trained vision encoder [30, 47] with a lan-
guage model, linked by an alignment module such as an
MLP, or a query-based network. This design transforms
visual inputs into token sequences that the LLM can pro-
cess, facilitating multimodal prompts for tasks like visual
question answering [2, 6, 13, 45]. To enhance perfor-
mance, advanced LMMs, such as LLaVA-OneVision [18]
and Qwen2-VL [35], can encode higher-resolution images

into more image tokens, thereby capturing more granu-
lar visual details. However, as image resolution grows,
the number of visual tokens rises exponentially, leading
to substantially higher computational costs. For example,
LLaVA-1.5[22] processes 336x336 images into 576 tokens,
whereas LLaVA-OneVision can handle 1152x1152 images,
producing 7,290 tokens. This challenge becomes even
more pronounced in video-based models like LongVA [49],
which must process tokens across numerous frames. Fine-
grained visual tokenization boosts LMM performance but
poses an inference bottleneck, driving efforts to balance per-
formance and cost through token reduction.

2.2. Token Reduction for LMMs

Token reduction has become a key strategy for improving
the efficiency of LMMs by mitigating the computational
cost associated with extensive visual token sequences. Ex-
isting methods can be broadly classified into training-based
and training-free approaches. Training-based methods,
such as LLaVA-Mini [51] and LLaVolta [5], introduce ad-
ditional modules during model training to compress visual
tokens and preserve critical information, while approaches
like ATP-LLaVA [44] and p-MoD [48] train pruning mod-
ules to dynamically retain important tokens across LLM
layers. However, these methods demand substantial com-
putational resources to retrain the models, limiting their
real-world applicability. In contrast, training-free meth-
ods prune tokens without additional training, often lever-
aging attention mechanisms to identify and discard redun-
dant tokens. For instance, FastV[7] and Sparse VLM exploit
text—visual attention to rank token importance, whereas
FasterVLM [50], VisionZip [41], and VTC-CLS [34] rely
on [CLS] token attention in the vision encoder to eval-
uate token importance and prune redundant tokens. Fit-
Prune [43] and PDrop [37] propose a progressive multi-
stage pruning strategy in LMMs to fully utilize visual infor-
mation. However, the pruning strategies in these methods
often lack adaptability to different LMMs, which frequently
leads to significant performance drops. In contrast, we pro-
pose a general framework that automatically devises supe-
rior pruning strategies for diverse LMMs, thereby bridging
the gap between efficiency and performance.

3. Method

In this section, we introduce VFlowOpt, a framework that
employs a pruning strategy to reduce redundant visual to-
kens during LMM inference while preserving essential vi-
sual information. This strategy involves multiple hyperpa-
rameters that our VFlowOpt framework automatically op-
timizes for proper configuration—an essential factor for
maintaining model performance. Specifically, Section 3.1
explains how our method evaluates the importance of visual
tokens, Section 3.2 presents progressive pruning and token
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Figure 2. Overview of VFlowOpt. (1) During inference, VFlowOpt first assesses the importance of visual tokens, based on which
progressive token pruning is performed. After the initial pruning stage, the pruned tokens are merged and recycled. The pruning strategy
used in this process is defined by the (2) Optimization Stage. (a) The importance map is computed by combining the attention of relatively
important tokens with the entropy of image patches. (b) The pruned tokens are grouped into grid cells, where each cell has a side length of
a. Within each grid cell, the pruned tokens are fused using a weighted average, with their importance values as weights, and then recycled.
(2) VFlowOpt optimizes the pruning strategy by minimizing the discrepancy of the last token in the final layer of the LMM with and

without applying the pruning strategy.
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Figure 3. The attention of redundant tokens (marked in red) fails
to reflect the importance of other tokens and instead focuses on
similar tokens, such as background elements.

recycling strategies, and finally, Section 3.3 details how
VFlowOpt customizes the superior pruning strategy (i.e.,
selects the pruning hyperparameters) for different LMMs.

3.1. Visual Token Importance Estimation

For a general approach to evaluate visual token importance,
the previous works [15, 42] propose that the importance of

visual tokens can be estimated using the average attention
from all other tokens in ViTs. Although it has achieved
some success, we find that redundant tokens (e.g., tokens
corresponding to background regions) often assign dispro-
portionately high attention to other similar redundant tokens
(shown in Fig. 3), reducing the reliability of the importance
estimation. To address this, we first identify relatively im-
portant tokens based on the attention they receive from all
tokens (tokens receiving higher attention are considered rel-
atively important), as shown in Fig. 2 (a). We then exclude
redundant tokens and use the attention from these relatively
important tokens as a more robust metric. Additionally, we
incorporate the information entropy of image patches into
the importance score to prioritize tokens corresponding to
visually informative regions.

To identify relatively important visual tokens, we define
a threshold:

ey

where 7 is the threshold, A;; is the attention weight from



token ¢ to token j within a ViT layer, IV is the total number
of tokens, and ¢ is a sensitivity hyperparameter. We then
treat tokens with a total attention exceeding 7 as relatively
important:

N
K={il)_ Aij>r1} 2)
=1

Here, IC denotes the set of indices of these relatively impor-
tant tokens.

The information entropy of an image patch correspond-
ing to token 1 is defined as:

L-1
H(Vi) = =) prlogps, 3)
k=0

where V; is the image patch corresponding to token ¢, py, is
the proportion of pixels in the patch with gray level k, and
L is the total number of possible gray levels (256 for 8-bit
images). Here, the gray level is defined as the average of
the RGB channel values, providing a scalar representation
of pixel brightness. Higher entropy reflects greater diversity
in pixel intensities and richer visual information.

The importance score of token ¢ is computed by com-
bining the attention it receives from tokens in /C with the
entropy of its corresponding image patch, normalized via
the softmax function:

exp(H (V7))

I = A + - ;
kgc > L exp(H(V;))

where I; denotes the importance score of token i, Ay; is
the attention weight from token k to token i, H(V;) is the
entropy of the image patch corresponding to token ¢, « is
a hyperparameter that determines the entropy term’s contri-
bution, and N is the total number of tokens. This approach
mitigates biases from redundant tokens and leverages the
visual information of image patches, thereby facilitating ef-
fective estimation of visual token importance.

“4)

3.2. Progressive Pruning and Token Recycling

Previous studies [38, 52] indicate that visual tokens play a
more critical role in the shallower layers of LMMs, whereas
redundancy tends to increase in deeper layers. Based on
this, we adopt a progressive pruning strategy. To balance
the pruning process’s simplicity with its fine-grained con-
figuration, we evenly divide the LMM into three stages.
At the beginning of each stage, a predetermined fraction of
visual tokens with higher importance scores (as defined in
Sec. 3.1) is retained according to the stage-specific retention
ratios R = [Ry, Ra, R3], while the rest are pruned. Notably,
the position IDs of visual tokens remain unchanged follow-
ing pruning, preserving the original spatial structure of the
visual input. Following the previous work [38], we com-
pute the average visual token retention rate across the entire

LMM as follows:

Ri-Li+Ri-Ry-Lo+Ry-Ry-Rs- L3

E:
L

)
where L, Lo, and L3 represent the number of layers in the
three stages, respectively, and L denotes the total number of
layers in the LMM.

To prevent the loss of any small but potentially signifi-
cant information during the initial pruning process (before
visual tokens are fed into the LLM), we propose a token
merging and recycling strategy to compactly represent re-
dundant visual information. Specifically, We use a square
grid (with each cell having side length a) to group pruned
tokens that fall into the same grid cell, as shown in Fig. 2
(b). Within each cell, the pruned tokens are fused into a
single token by computing a weighted average of their rep-
resentations, using their importance scores as weights. This
fused token then replaces the pruned token with the highest
importance score in that cell and is incorporated into the set
of retained tokens.

Formally, a token ¢; with spatial coordinates (z;, y;) be-
longs to a grid cell G, 4 if

lyi/a] = q, (6)

where p and q are the row and column indices of the grid
cell, respectively. Suppose there are k pruned tokens in G, 4

|z;/a| =p and

with corresponding importance scores Iy, Is, . . ., I} and to-
ken representations t1, to, ..., tg. The fused token tﬁgged
is computed as:
k
tpaq _ Zi:l 11 i ti (7)
merged — k :
21 L

fom P04
We then assign t,

ereed (0 the position of the pruned token
with the highest importance score I, in G, 4, counting it
among the retained tokens. By combining token pruning
with this recycling strategy, we reduce token redundancy

while avoiding potential information loss.

3.3. Pruning Strategy Optimization

The pruning strategies described in Sec. 3.1 and Sec. 3.2
involve several key hyperparameters that directly affect the
performance of LMMs after token pruning. Properly defin-
ing these hyperparameters is crucial for preserving model
performance. However, existing approaches often rely on
manually designed pruning strategies and apply the same
strategy across different LMMs, without considering the
unique characteristics of each model. This coarse-grained
approach can lead to significant performance degradation
due to its lack of fitness for different LMMs, leaving the task
of designing pruning strategies tailored to specific LMMs as
a formidable challenge.



Previous interpretability studies of LMMs [16, 54] of-
fer crucial insights into their internal mechanisms. Specifi-
cally, these works reveal that in the lower and middle layers
of LMMs, visual information from visual tokens is aggre-
gated into the corresponding query text tokens. In the higher
layers, the multimodal representation encoded in the query
text tokens is further progressively propagated to the final
position of the input sequence, ultimately influencing the
subsequent inference process.

Inspired by this insight, we propose a framework that
requires only a small amount of unlabeled data and lever-
ages the internal flow of visual information within LMMs
to search for the superior pruning strategy tailored to the
characteristics of different LMMs, as shown in Fig. 2 (2).
Specifically, we recast the task of designing the superior
pruning strategy as an optimization problem, aiming to min-
imize the discrepancy in visual information flow with and
without applying a pruning strategy to perform visual to-
ken pruning. In this framework, we treat the final token
in the last layer as the representative outcome of the visual
information flow. We use cosine similarity to measure the
similarity of the final token representation with and with-
out visual token pruning. A higher similarity indicates that
the discrepancy between the visual information flow with
and without pruning is smaller. Accordingly, we define the
following optimization objective:

max f(s) = CosineSim(hy, gs(hy)). 8)
Here, hy represents the representation of the final token in
the last layer before pruning, and g, (h ) represents the final
token representation after applying the pruning strategy s
(with g; modeling its effect on the token feature), and S is
the solution space.
To efficiently search for the superior pruning strategy
s, we employ Bayesian optimization, which systematically
explores the hyperparameter space—including the thresh-
old sensitivity ¢, the entropy weight «, the grid size a, and
the pruning ratios 1, Ro, and R3—to maximize the target
function f(s). In short, Bayesian optimization constructs
a surrogate model to approximate the objective function
and employs an acquisition function to balance exploration
and exploitation, thereby efficiently guiding the search for
promising hyperparameter settings. The details of this opti-
mization process are presented in Algorithm 1.

4. Experiments

In this section, we evaluate our approach on various LMMs
across diverse image and video benchmarks, followed by
an efficiency analysis and an ablation study of each com-
ponent. Finally, we illustrate how our method affects dis-
crepancies in the visual information flow with and without
pruning, offering deeper insights into our approach.

Algorithm 1 VFlowOpt with Bayesian Optimization

Input: LMM 6, data samples D, number of Bayesian op-
timization iterations 7', computation budget R, target
function f(-): the sum of cosine similarities between
the last token in the last layer of the LMM 6 with and
without visual token pruning, computed over all data
samples D.

Output: retention rates R, Ro, R3; threshold sensitivity
t; entropy weight in importance score «; grid size a.

1: Initialize a Gaussian Process model GP

2: Define the acquisition function A(-) (Expected Im-
provement is adopted)

3: Uniformly sample initial points:

Xo = {(R1, Ra,t,,a) | Ry, R1,t,,a € valid ranges}

4: for all x € X, do

5: Calculate 23 using the constraint: R = (Ry - Ly +
Ri-Ry-Lo+Ri-Ry-R3-L3)/L

6: Form pruning strategy: s = (R, Ro, R3, t, o, a)

7: Evaluate the target function f(s | 6, D)

8: end for

9: forn=0to7T — 1do

10: Fit GP to the observed data (S, f(Sy, | 0,D))

11: Select the next point: x,, 1 + arg max, A(z; GP)

12: Calculate R3 using the constraint: R = (Ry - L1 +
Ri-Ry-Lo+ Ri-Ry-R3-L3)/L

13: Form pruning strategy: s, .1 = (R1, Ra, Rs, t, &, a)nt1
14: Update Sy, +1 < Sp U {Sn41}
15: end for

16: return (R, Ro, R3,t, a, a)* that maximize f

4.1. Experiment Setting

Datasets.  We evaluate our method on ten image-
based multimodal benchmarks: GQA [1], VizWiz [14],
ScienceQA-IMG [27], TextVQA [31], ChartQA [28],
POPE [20], MME [10], MMBench [26], MMStar [6], and
DocVQA [29]. For video understanding, we adopt two
datasets—SeedBench (video) [17] and VideoMME [11],
where VideoMME is partitioned by video length into short,
medium, and long subsets. Further details are presented in
the Appendix.

Model Architectures. We integrate VFlowOpt into mul-
tiple LMMs, including LLaVA-OneVision-7B, LLaVA-
NeXT-7B [24], and Qwen2-VL-7B [35]. These models
employ various vision encoders (SigLIP, CLIP, and a ViT
designed for Qwen2-VL) and LLM backbones (Qwen2-
7B and Vicuna-7B). To prevent out-of-memory issues in
Qwen2-VL, we set max_pixels = 3000000.

Comparison Methods. We compare VFlowOpt against
five baseline methods: FastV [7], FitPrune [43],
PDrop [37], SparseVLM [53], and VisionZip [41]. FastV,



Method | MMStar MME MMB SQA POPE GQA VizWiz VQA™" ChartQA DocVQA | Avg.
Upper Bound, 100% Tokens
Vanilla | 61.7 1581 80.8 95.8 89.1 62.2 60.4 76.0 80.0 87.5 | 100%
Retain 50% Tokens (| 50%)
FastV (eccv24) 58.9 1549 79.4 92.8 87.9 61.5 61.1 72.5 68.6 84.0 96.5%
FitPrune (aaa125) 4.5 96.6 1.0 8.6 18.8 16.2 6.8 37.6 37.7 30.7 21.4%
PDrop (cvpr25) 371 628.6 32.1 64.8 81.3 44.2 48.9 63.7 62.7 62.2 71.3%
SparseVLM (2024.10) | 59.8 1577 80.5 94.1 88.1 61.9 60.4 73.9 70.5 80.8 97.1%
VisionZip (cvpr25) 60.4 1587 80.3 94.6 89.3 62.7 59.8 74.2 754 88.4 98.9%
VFlowOpt 61.3 1591 81.1 95.4 89.4 62.4 60.0 75.1 77.8 90.0 99.9%
Retain 25% Tokens (] 75%)
FastV (eccv24) 54.0 1539 77.0 88.6 83.8 58.2 61.0 58.3 42.7 62.9 86.4%
FitPrune (aan125) 52 92.6 1.1 5.9 20.2 14.5 5.1 29.7 27.3 23.2 17.6%
PDrop (cver25) 36.8 574.4 31.3 62.8 78.0 422 47.1 56.3 47.5 47.0 65.2%
SparseVLM (2024.10) | 56.6 1520 78.7 90.3 87.2 59.7 60.8 66.3 54.0 66.6 90.5%
VisionZip (cvpr25) 54.6 1562 78.9 90.4 88.8 61.0 60.4 70.0 66.3 79.6 94.3%
VFlowOpt 57.8 1570 79.9 92.3 89.1 61.2 60.4 72.5 69.1 82.3 96.3%
Retain 10% Tokens (] 90%)
FastV (eccv24) 46.0 1209 70.1 81.7 77.0 51.5 56.4 35.6 21.3 332 69.7%
FitPrune (aaa125) 54 27.0 0.9 35 2.3 4.6 0.7 6.9 5.9 6.9 51%
PDrop (cver25) 31.8 456.3 22.5 59.0 65.9 35.7 43.3 337 19.6 18.5 49.9%
SparseVLM (2024.10) | 45.1 1191 71.8 83.7 80.0 54.6 56.4 39.8 37.6 39.6 74.0%
VisionZip (cvpr25) 49.5 1389 74.8 86.2 86.1 57.2 56.8 56.4 46.1 49.0 82.1%
VFlowOpt 52.0 1464 75.1 88.4 85.2 57.3 57.3 60.2 53.6 56.1 85.5%

Table 1. Performance comparison on LLaVA-OneVision-7B under different token retention conditions. “Avg.” refers to average accuracy
on 10 benchmarks. For each reduction ratio, the best average performance is shown in bold.

FitPrune, PDrop, and SparseVLM rely on text-visual atten-
tion in the LLM to prune visual tokens but differ as follows:
FastV performs a single pruning step after the second LLM
layer; FitPrune prunes tokens in each layer according to pre-
defined, layer-specific ratios; PDrop conducts four pruning
steps within the LLM, using the same retention ratio each
time; and SparseVLM uses the attention weights of prese-
lected text tokens to evaluate the importance of visual to-
kens. VisionZip, in contrast, determines token importance
based on the [cls] token’s attention; for models lacking a
[cls] token, we follow VisionZip’s original procedure by
computing the average attention each token receives from
every other token in the ViTs.

Implementation Details. For LLaVA-OneVision-7B and
Qwen2-VL-7B, we perform token pruning at three distinct
points: before the LLM, and after the 9th and 18th lay-
ers. For LLaVA-NeXT-7B, pruning is conducted before
the LLM, and again after the 10th and 20th layers. During
optimization, we sample 30 unlabeled instances from each
model’s training datasets; for models without publicly avail-
able training dataset, we instead use random samples from
the LLaVA-OneVision training set. The optimization is per-
formed for a total of 50 iterations. For LMMs that modify
visual tokens output by the vision encoder (e.g., unpadding
and interpolation in LLaVA-OneVision, and unpadding in
LLaVA-NeXT), we apply corresponding transformations to
the importance maps so they remain fully aligned with the
final visual tokens.

4.2. Image Understanding Tasks

We evaluate the proposed VFlowOpt on image understand-
ing benchmarks with LLaVA-OneVision-7B using various
pruning ratios, and present the results in Tab. 1. Compared
to other baselines, VFlowOpt consistently maintains supe-
rior accuracy across different levels of token pruning. With
50% token retention, VFlowOpt achieves 99.9% of the orig-
inal performance, exceeding the second-best approach by
1.0%. This negligible performance drop underscores the
method’s strong potential for practical deployment. Un-
der more extreme pruning conditions with very few retained
tokens, VFlowOpt’s advantage becomes more pronounced.
When only 10% of the visual tokens are retained, VFlowOpt
preserves 85.5% of the original performance, surpassing the
second-best approach by 3.3%. This finding suggests that
VFlowOpt can effectively leverage limited visual informa-
tion to maintain high performance under strict computa-
tional budgets. When applied to LLaVA-OneVision, both
FitPrune and PDrop disrupt the model’s normal output, in-
dicating their inability to devise effective pruning strategies
for different architectures. In contrast, VFlowOpt demon-
strates a clear advantage by tailoring its pruning strategy to
each model’s unique characteristics.

To further validate VFlowOpt’s generalization capabil-
ity, we evaluate it on LLaVA-NeXT-7B and Qwen2-VL-7B.
As shown in Tab. 2 and Tab. 3, VFlowOpt once again de-
livers the top results on these LMMs. When retaining 25%



Method |MMStar MME MMB SQA POPE GQA | Avg.
Upper Bound, 100% Tokens

Vanilla | 37.6 1519 674 70.1 865 642 | 100%
Retain 25% Tokens (| 75%)

FastV 35.1 1477 65.6 674 831 604 |957%

VisionZip 35.8 1501 654 679 86.7 61.5|97.3%

VFlowOpt | 37.0 1514 67.0 677 87.6 62.6 |98.8%
Retain 10% Tokens (| 90%)

FastV 29.2 1282 61.6 638 71.7 559 |857%

VisionZip 32.6 1378 61.5 67.1 835 57.0 |91.6%

VFlowOpt | 35.1 1393 629 674 83.6 573 |93.4%

Table 2. Comparative experiments on LLaVA-NeXT-7B.

Method |MMStar MME MMB SQA POPE GQA | Avg.

Upper Bound, 100% Tokens

Vanilla | 575 1680 80.3 847 884 62.2 |100%

Retain 25% Tokens (1 75%)

FastV 54.5 1597 763 79.0 81.8 572 | 93.8
VisionZip 55.2 1618 789 81.3 869 60.0 | 96.8
VFlowOpt | 55.9 1659 79.8 815 871 604 | 97.8
Retain 10% Tokens (1 90%)
FastV 44.9 1405 70.0 755 758 51.6 | 844
VisionZip 49.3 1518 76,5 782 843 54.1 | 90.9
VFlowOpt | 51.0 1591 78.0 78.6 84.5 54.8 | 92.8
Table 3. Comparative experiments on Qwen2-VL-7B.
Method | SeedBench | VideoMME | Avg.
| (video) | S M L |
Upper Bound, 100% Tokens
Vanilla | 56.9 | 705 546 495 | 100%
Retain 25% Tokens (| 75%)
FastV 54.7 669 532 477 96.2%
VisionZip 56.4 68.3 553  49.0 99.0%
VFlowOpt 56.8 689 558 49.2 100 %
Retain 10% Tokens (] 90%)
FastV 48.7 537 47.6 423 83.6%
VisionZip 55.0 59.7 51.8 463 92.4%
VFlowOpt 55.5 63.3 527 48,6 | 95.5%

Table 4. Comparative experiments on video understanding tasks.

of the tokens, VFlowOpt preserves 98.8% of the original
performance on LLaVA-NeXT-7B and 97.8% on Qwen2-
VL-7B. Even under the stringent condition of retaining only
10% of the tokens, VFlowOpt maintains 93.4% of the per-
formance on LLaVA-NeXT-7B and 92.8% on Qwen2-VL-
7B, demonstrating its strong generalizability.

4.3. Generalization to Video Tasks

We further explore VFlowOpt’s generalization across dif-
ferent modalities by evaluating it on video benchmarks us-
ing LLaVA-OneVision-7B. As shown in Tab. 4, VFlowOpt
surpasses other baselines under various token retention ra-
tios. Notably, when only 25% of the tokens are preserved,
VFlowOpt incurs virtually no performance loss on LLaVA-
OneVision-7B, maintaining 100% of its original perfor-
mance. Even under the more stringent condition of retain-

ing just 10% of the tokens, VFlowOpt still retains 95.5% of
the original performance, underscoring its robust general-
ization in the video domain.

4.4. Efficiency Analysis

We demonstrate the efficiency of VFlowOpt by conduct-
ing a comparative study on LLaVA-OneVision-7B running
on a single NVIDIA A100-SXM4-80GB GPU, focusing on
FLOPs, KV-Cache memory usage, and inference latency.
The efficiency analysis of other baseline methods is pro-
vided in the Appendix.

We assess various token pruning ratios on the MME
benchmark, measuring overall performance and average ef-
ficiency metrics across all samples. As shown in Tab. 5,
VFlowOpt significantly enhances LLaVA-OneVision-7B’s
computational efficiency by reducing FLOPs, shrinking
KV-Cache memory usage, and accelerating inference speed.
Notably, at a 50% token pruning ratio, VFlowOpt achieves a
49.5% reduction in KV-Cache memory and a 1.8 x speedup
in inference, while boosting performance by 0.7%. At a
more aggressive 75% pruning ratio, we observe a 74.2%
reduction in KV-Cache memory and a 3.1x speedup, with
only a 0.7% performance drop. Under extremely tight com-
putational budgets, pruning 90% of visual tokens reduces
the KV-Cache memory footprint by 89%, accelerates infer-
ence by 3.8, and degrades performance by only 7.4%.

Such reductions in inference latency substantially benefit
user-facing applications demanding real-time performance,
such as autonomous driving and robotics. Moreover, by
significantly shrinking the KV-Cache, large-batch inference
on LMMs can accommodate more user requests simulta-
neously, thereby substantially reducing overall inference
costs. In summary, VFlowOpt uses far less GPU memory
and delivers faster inference while preserving model per-
formance, offering a highly practical solution for efficiently
deploying LMMs in real-world scenarios.

4.5. Ablation Study

To confirm the contributions of each component in our to-
ken pruning strategy, we conduct ablation experiments on
LLaVA-OneVision-7B under a computational budget of re-
taining 25% of tokens. As shown in Tab. 6, removing im-
portance calibration (i.e., directly using the mean attention
over all tokens received by each visual token as its impor-
tance score), omitting token recycling, or discarding pro-
gressive pruning (i.e., maintaining the same number of to-
kens at each layer) leads to noticeable performance degra-
dation across MMStar, MMBench, and SQA. By contrast,
the complete VFlowOpt method consistently exhibits min-
imal performance loss, highlighting the effectiveness of all
its components in pruning redundant tokens while preserv-
ing essential visual information.

We further examine how the number of samples and the



Methods Token |FLOPs| A Latency | A KV Cache | A Performance T A
Reduction (T) (ms) (MB)
LLaVA-OneVision-7B| - | 714 - | 10401 -] 17864 - | 1581 -
+ VFlowOpt 50% 37.2 -48.0% 5842  -43.8% 902.8 -49.5% 1591 +0.6%
75% 19.1 -73.2% 328.5 -68.4% 460.6 -74.2% 1570 -0.7%
90% 7.7 -89.2% 272.1 -73.8% 197.1 -89.0% 1464 -7.4%

Table 5. Efficiency analysis of LLaVA-OneVision-7B with VFlowOpt. The detailed metric includes computation (FLOPs), latency, and

KV-Cache memory. (A) denotes the reduction ratio. .

Pruning Strategy | MMStar | MMBench | SQA
VFlowOpt | 57.8 | 799 |923
w/o Importance Calibration | 56.2 79.4 91.8
w/o Token Merging 57.6 79.8 91.9
w/o Progressive Pruning 56.0 79.1 91.0

Table 6. Ablation studies of pruning strategy components.
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Figure 4. Relationships of sample size (left) and optimization steps
(right) with optimization time and final performance.

number of optimization iterations in the Bayesian optimiza-
tion procedure influence both optimization time and final
performance. As illustrated in Fig. 4, the optimization time
increases linearly with the number of samples and steps.
Using 30 samples and 50 steps strikes an effective balance
between time efficiency and performance, requiring only
about 30 minutes to reach an exceptional result.

4.6. Visual Information Flow Analysis

We further investigate how Bayesian optimization formu-
lates the superior pruning strategy by examining its im-
pact on visual information flow. Specifically, we compare
the randomly initialized pruning strategy derived from the
Bayesian optimization process with its final optimized strat-
egy, measuring their respective effects on the text tokens
that follow the visual tokens at each LLM layer. Because
these text tokens can receive information from the visual to-
kens via the LLM’s unidirectional attention mechanism, ex-
amining differences in these tokens with and without prun-
ing effectively reveals how visual information flow is al-
tered. As shown in Fig. 5, under the same computational
budget, the initial strategy causes a pronounced discrepancy
between text token representations with and without prun-
ing, indicating that it significantly disrupts the visual infor-
mation flow. In contrast, when using the optimized strategy,
the text tokens remain much more similar to those observed

What colors are the traffic
signs at the top, in the
middle, and at the bottom?
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Figure 5. Visualization of the discrepancies in visual information
flow corresponding to the pruning strategies before and after opti-
mization, along with an example of visual question answering.

without visual token pruning. This important finding sug-
gests that the optimization process yields a pruning strat-
egy that preserves crucial visual information by minimizing
the difference in visual information flow with and without
pruning, thereby retaining LMM performance to the great-
est extent possible.

5. Conclusion

In this paper, we address the pressing challenge of computa-
tional inefficiency in LMMs by introducing a general frame-
work for visual token pruning. We reformulate pruning as
an optimization problem focused on minimizing the diver-
gence of visual information flow with and without pruning,
thereby facilitating a tailored pruning strategy for diverse
LMMs. By leveraging calibrated attention in ViTs to eval-
uate token significance and merging pruned tokens using
importance-based weighting, we preserve critical informa-
tion during inference without requiring retraining or man-
ual tuning. Extensive experiments underscore the efficiency
and generalizability of our approach, making it a practical
solution for deploying LMMs in real-world settings, partic-
ularly in resource-constrained environments.
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VFlowOpt: A Token Pruning Framework for LMMs with Visual Information
Flow-Guided Optimization

Supplementary Material

A. Overview of Baselines

» FastV[7] is a plug-and-play method that optimizes infer-
ence efficiency in LMMs by dynamically pruning visual
tokens after the second layer, significantly reducing com-
putational costs while maintaining performance. It iden-
tifies that image tokens receive drastically lower attention
in LLM and strategically removes less impactful tokens.
FitPrune [43] is a training-free method for pruning visual
tokens in multimodal LMMs, based on quickly estimat-
ing optimal pruning schemes through attention distribu-
tion fitting. It statistically determines which tokens can
be discarded by minimizing divergence between atten-
tion distributions before and after pruning, using only a
small batch of inference data. This approach rapidly pro-
duces a pruning recipe tailored to a given computation
budget, significantly reducing computational complexity
while preserving model performance.

Pdrop [37] accelerates large vision-language models by
progressively removing redundant visual tokens in deeper
layers based on token similarity. It partitions models into
multiple stages, maintaining all tokens initially to pre-
serve critical visual information, then gradually pruning
tokens as layers deepen. This approach effectively re-
duces computational costs without compromising perfor-
mance during both training and inference.

Sparsevlm [53] introduces a training-free, text-guided vi-
sual token sparsification method for LMMs, significantly
reducing computational overhead by adaptively selecting
important visual tokens based on relevant text prompts. It
employs an adaptive pruning strategy at each layer and re-
cycles pruned visual tokens into compact representations
to minimize information loss.

Visionzip [41] is a simple yet effective method that re-
duces visual token redundancy in LMMs by selecting
only the most informative tokens, significantly improv-
ing efficiency while maintaining performance. It em-
ploys a text-agnostic approach that merges and com-
presses redundant tokens, reducing computational costs
and enhancing inference speed without requiring addi-
tional training.

B. Overview of Benchmarks

* MME [10] offers a robust benchmark for evaluating
LVLMs across multimodal tasks. It assesses models on
two major fronts: perception and cognition, using 14
well-structured subtasks that challenge their interpretive

and analytical abilities.

MMBench [26] takes a two-pronged approach by intro-
ducing an extensive dataset that broadens the scope of
evaluation questions and a novel CircularEval strategy
that utilizes ChatGPT to convert free-form responses into
structured answer choices.

ScienceQA [27] focuses on evaluating multi-hop rea-
soning and interpretability within scientific domains. It
features a large dataset of approximately 21K multiple-
choice questions across a variety of science topics, ac-
companied by detailed annotations and explanations.
VizWiz [14] stands out in the VQA field by using a
dataset of over 31,000 visual questions that come from
a real-world setting, featuring images taken by visually
impaired individuals and their associated spoken queries,
along with crowdsourced answers.

GQA [1] is built for complex visual reasoning tasks, con-
taining 22 million questions generated from scene graph-
based structures. It incorporates innovative evaluation
metrics focused on consistency, grounding, and plausibil-
ity, pushing the boundaries of vision-language evaluation.
POPE [20] introduces a methodology to evaluate object
hallucination in LVLMs, transforming the task into a bi-
nary classification problem. By using simple Yes-or-No
prompts, POPE highlights model tendencies towards hal-
lucination through various object sampling strategies.
VQA [12] collects complementary images such that ev-
ery question in the balanced dataset is associated with a
pair of similar images that result in two different answers
to the question.

ChartQA [28] is a large-scale benchmark designed for
question answering on charts, focusing on both vi-
sual and logical reasoning with 9.6K human-written and
23.1K automatically generated questions. Unlike previ-
ous datasets, it includes real-world charts and open-ended
questions that require mathematical operations, overcom-
ing limitations of template-based approaches.

DocVQA [29] is a large-scale dataset designed for Visual
Question Answering (VQA) on document images, con-
taining 50,000 questions over 12,000+ real-world docu-
ments. Unlike previous datasets, it requires models to un-
derstand both textual content and visual layout, including
tables, forms, and complex structures. Baseline evalua-
tions show a significant gap between model and human
performance, highlighting the need for improved docu-
ment comprehension methods.

MMstar [6] is a new benchmark designed to address



Methods Token |FLOPs | A Latency | A KV Cache | A Performance T A
Reduction (T) (ms) (MB)

LLaVA-OneVision-7B | - | 714 - | 1040.1 - | 17864 - 1581 -

+ VFlowOpt 50% 372  -48.0% | 5842 -43.8% 902.8 -49.5% 1591 +0.6%

+ FastV 50% 38.1  -46.6% | 615.1 -41.9% 902.8 -49.5% 1549 -2.0%

+ VisionZip 50% 377 -472% | 580.7 -44,2% 902.8 -49.5% 1587 +0.1%

Table 7. Efficiency analysis of LLaVA-OneVision-7B with VFlowOpt, FastV, and VisionZip. The detailed metric includes computation
(FLOPs), latency, and KV-Cache memory. (A) denotes the reduction ratio.

issues in evaluating Large Vision-Language Models
(LVLMs), specifically unnecessary visual content and
unintentional data leakage, which can mislead perfor-
mance assessments. It includes 1,500 carefully selected
vision-dependent samples, ensuring accurate evaluation
of LVLMs’ true multi-modal reasoning abilities. MMStar
introduces new metrics—Multi-Modal Gain (MG) and
Multi-Modal Leakage (ML)—to measure actual improve-
ments from multi-modal training, with evaluations show-
ing GPT-4V leading in both accuracy and multi-modal ef-
ficiency.

* SeedBench [17] is a large-scale benchmark designed
to evaluate the generative comprehension capabilities of
Multimodal Large Language Models (MLLMs), featuring
19K human-annotated multiple-choice questions across
12 evaluation dimensions for both images and videos. It
introduces an advanced question-generation pipeline that
ensures high-quality, vision-dependent evaluation sam-
ples without requiring human or GPT intervention for as-
sessment. SEED-Bench provides comprehensive insights
into the strengths and limitations of 18 leading models,
offering a robust leaderboard for continuous benchmark-
ing and future research direction in multimodal Al

* VideoMME [11] is the first comprehensive benchmark
designed to evaluate Multi-Modal Large Language Mod-
els (MLLMs) in video analysis, covering 900 manually
annotated videos across six diverse domains and 30 sub-
categories. It introduces a full-spectrum evaluation with
multi-modal inputs, including subtitles and audio, and
assesses models across various temporal contexts, from
short clips to hour-long videos.

C. Efficiency Analysis about Baselines

We evaluate VFlowOpt, the well-performing baseline
FastV, and VisionZip on efficiency metrics under the con-
dition of retaining 50% of the tokens. With the same to-
ken retention rate, all methods showed identical KV-Cache
memory usage, while FLOPs and latency exhibited slight
differences, as shown in Tab. 7.
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